Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: normal and abnormal gonadal development and sex determination in mammals

Abstract

Sex differentiation in mammals occurs in three steps. The first is the establishment of chromosomal sex at fertilization, followed by the differentiation of the gonad into an ovary or testis, and finally the establishment of the phenotypic sex of the embryo and adult, which is regulated by the gonad. Disruption of any of these stages gives rise to sexual ambiguities that include 46,XY pure gonadal dysgenesis, 46,XX true hermaphroditism, and variable degrees of intersexuality. In this review, we focus on the development of the mammalian gonad from a bipotential primordium that differentiates into either an ovary or a testis. We describe the recent increase in our knowledge of the genetic defects that directly affect gonadal development, sex determination, and sex differentiation, with emphasis on the comparison of genetic studies in mice with studies of naturally occurring mutations in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of the mammalian gonads.

Similar content being viewed by others

References

  1. Swain A and Lovell-Badge R (1999) Mammalian sex determination: a molecular drama. Genes Dev 13: 755–767

    Article  CAS  PubMed  Google Scholar 

  2. Swain A and Lovell-Badge R (2002) Sex determination and differentiation. In Mouse Development: Patterning, Morphogenesis and Organogenesis, 371–393 (Eds Rossant J and Tam PP) London: Academic Press Ltd

    Chapter  Google Scholar 

  3. Brennan J and Capel B (2004) One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 5: 509–521

    Article  CAS  PubMed  Google Scholar 

  4. Yao HH (2005) The pathway to femaleness: current knowledge on embryonic development of the ovary. Mol Cell Endocrinol 230: 87–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McLaren A (1991) Development of the mammalian gonad: the fate of the supporting cell lineage. Bioessays 13: 151–156

    Article  CAS  PubMed  Google Scholar 

  6. Val P et al. (2003) SF-1 a key player in the development and differentiation of steroidogenic tissues. Nucl Recept 1: 8

    Article  PubMed  PubMed Central  Google Scholar 

  7. Luo X et al. (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77: 481–490

    Article  CAS  PubMed  Google Scholar 

  8. Bland ML et al. (2004) Differential requirement for steroidogenic factor-1 gene dosage in adrenal development versus endocrine function. Mol Endocrinol 18: 941–952

    Article  CAS  PubMed  Google Scholar 

  9. Mallet D et al. (2004) Gonadal dysgenesis without adrenal insufficiency in a 46,XY patient heterozygous for the nonsense C16X mutation: a case of SF1 haploinsufficiency. J Clin Endocrinol Metab 89: 4829–4832

    Article  CAS  PubMed  Google Scholar 

  10. Hasegawa T et al. (2004) Testicular dysgenesis without adrenal insufficiency in a 46,XY patient with a heterozygous inactive mutation of steroidogenic factor-1. J Clin Endocrinol Metab 89: 5930–5935

    Article  CAS  PubMed  Google Scholar 

  11. Bland ML et al. (2000) Haploinsufficiency of steroidogenic factor-1 in mice disrupts adrenal development leading to an impaired stress response. Proc Natl Acad Sci USA 97: 14488–14493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hastie ND (2001) Life, sex, and WT1 isoforms—three amino acids can make all the difference. Cell 106: 391–394

    Article  CAS  PubMed  Google Scholar 

  13. Reddy JC and Licht JD (1996) The WT1 Wilms' tumor suppressor gene: how much do we really know? Biochim Biophys Acta 1287: 1–28

    PubMed  Google Scholar 

  14. Hammes A et al. (2001) Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106: 319–329

    Article  CAS  PubMed  Google Scholar 

  15. Jaubert F et al. (2003) Gonad development in Drash and Frasier syndromes depends on WT1 mutations. Arkh Patol 65: 40–44

    PubMed  Google Scholar 

  16. Katoh-Fukui Y et al. (1998) Male-to-female sex reversal in M33 mutant mice. Nature 393: 688–692

    Article  CAS  PubMed  Google Scholar 

  17. Miyamoto N et al. (1997) Defects of urogenital development in mice lacking Emx2. Development 124: 1653–1664

    CAS  PubMed  Google Scholar 

  18. Birk OS et al. (2000) The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403: 909–913

    Article  CAS  PubMed  Google Scholar 

  19. Haqq CM and Donahoe PK (1998) Regulation of sexual dimorphism in mammals. Physiol Rev 78: 1–33

    Article  CAS  PubMed  Google Scholar 

  20. Klamt B et al. (1998) Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/− KTS splice isoforms. Hum Mol Genet 7: 709–714

    Article  CAS  PubMed  Google Scholar 

  21. Viger RS et al. (1998) Transcription factor GATA-4 is expressed in a sexually dimorphic pattern during mouse gonadal development and is a potent activator of the müllerian inhibiting substance promoter. Development 125: 2665–2675

    CAS  PubMed  Google Scholar 

  22. Tevosian SG et al. (2002) Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 129: 4627–4634

    CAS  PubMed  Google Scholar 

  23. Tremblay JJ and Viger RS (1999) Transcription factor GATA-4 enhances müllerian inhibiting substance gene transcription through a direct interaction with the nuclear receptor SF-1. Mol Endocrinol 13: 1388–1401

    CAS  PubMed  Google Scholar 

  24. Tremblay JJ and Viger RS (2001) GATA factors differentially activate multiple gonadal promoters through conserved GATA regulatory elements. Endocrinology 142: 977–986

    Article  CAS  PubMed  Google Scholar 

  25. Canning CA and Lovell-Badge R (2002) Sry and sex determination: how lazy can it be? Trends Genet 18: 111–113

    Article  CAS  PubMed  Google Scholar 

  26. Mansour S et al. (1995) A clinical and genetic study of campomelic dysplasia. J Med Genet 32: 415–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang BL et al. (1999) Autosomal XX sex reversal caused by duplication of SOX9. Am J Med Genet 87: 349–353

    Article  CAS  PubMed  Google Scholar 

  28. Bishop CE et al. (2000) A transgenic insertion upstream of sox9 is associated with dominant XX sex reversal in the mouse. Nat Genet 26: 490–494

    Article  CAS  PubMed  Google Scholar 

  29. Vidal V et al. (2001) Sox9 induces testis development in XX transgenic mice. Nat Genet 28: 216–217

    Article  CAS  PubMed  Google Scholar 

  30. Chaboissier MC et al. (2004) Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 131: 1891–1901

    Article  CAS  PubMed  Google Scholar 

  31. Arango NA et al. (1999) Targeted mutagenesis of the endogenous mouse Mis gene promoter: in vivo definition of genetic pathways of vertebrate sexual development. Cell 99: 409–419

    Article  CAS  PubMed  Google Scholar 

  32. Schmahl J and Capel B (2003) Cell proliferation is necessary for the determination of male fate in the gonad. Dev Biol 258: 264–276

    Article  CAS  PubMed  Google Scholar 

  33. Colvin JS et al. (2001) Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104: 875–889

    Article  CAS  PubMed  Google Scholar 

  34. Nef S et al. (2003) Testis determination requires insulin receptor family function in mice. Nature 426: 291–295

    Article  CAS  PubMed  Google Scholar 

  35. Nachtigal MW et al. (1998) Wilms' tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell 93: 445–454

    Article  CAS  PubMed  Google Scholar 

  36. Zanaria E et al. (1994) An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 372: 635–641

    Article  CAS  PubMed  Google Scholar 

  37. Muscatelli F et al. (1994) Mutations in the DAX1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372: 672–676

    Article  CAS  PubMed  Google Scholar 

  38. Bardoni B et al. (1994) A dosage-sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet 7: 497–501

    Article  CAS  PubMed  Google Scholar 

  39. Swain A et al. (1998) Dax1 antagonizes Sry action in mammalian sex determination. Nature 391: 761–767

    Article  CAS  PubMed  Google Scholar 

  40. Bouma GJ et al. (2005) Gonadal sex reversal in mutant Dax1 XY mice: a failure to upregulate Sox9 in pre-Sertoli cells. Development 132: 3045–3054

    Article  CAS  PubMed  Google Scholar 

  41. Meeks JJ et al. (2003) Dax1 is required for testis determination. Nat Genet 34: 32–33

    Article  CAS  PubMed  Google Scholar 

  42. Lalli E and Sassone-Corsi P (2003) DAX1, an unusual orphan receptor at the crossroads of steroidogenic function and sexual differentiation. Mol Endocrinol 17: 1445–1453

    Article  CAS  PubMed  Google Scholar 

  43. Achermann JC et al. (2001) Phenotypic spectrum of mutations in DAX1 and SF-1. Mol Cell Endocrinol 185: 17–25

    Article  CAS  PubMed  Google Scholar 

  44. Tabarin A et al. (2000) A novel mutation in DAX1 causes delayed-onset adrenal insufficiency and incomplete hypogonadotropic hypogonadism. J Clin Invest 105: 321–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ozisik G et al. (2003) An alternate translation initiation site circumvents an amino-terminal DAX1 nonsense mutation leading to a mild form of X-linked adrenal hypoplasia congenita. J Clin Endocrinol Metab 88: 417–423

    Article  CAS  PubMed  Google Scholar 

  46. Yao HH et al. (2002) Desert hedgehog/patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev 16: 1433–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Clark AM et al. (2000) Desert hedgehog (Dhh) gene is required in the mouse for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod 63: 1825–1838

    Article  CAS  PubMed  Google Scholar 

  48. Umehara F et al. (2000) A novel mutation of desert hedgehog in a patient with 46,XY partial gonadal dysgenesis accompanied by minifascicular neuropathy. Am J Hum Genet 67: 1302–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brennan J et al. (2003) Pdgfr-a mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev 17: 800–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kitamura K et al. (2002) Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32: 359–369

    Article  CAS  PubMed  Google Scholar 

  51. Jeyasuria P et al. (2004) Cell-specific knockout of steroidogenic factor 1 reveals its essential roles in gonadal function. Mol Endocrinol 18: 1610–1619

    Article  CAS  PubMed  Google Scholar 

  52. Tamura M et al. (2001) Pod-1/capsulin shows a sex- and stage-dependent expression pattern in the mouse gonad development and represses expression of Ad4BP/SF-1. Mech Dev 102: 135–144

    Article  CAS  PubMed  Google Scholar 

  53. Cui S et al. (2004) Disrupted gonadogenesis and male-to-female sex reversal in Pod1 knockout mice. Development 131: 4095–4105

    Article  CAS  PubMed  Google Scholar 

  54. Crisponi L et al. (2001) The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus/inversus syndrome. Nat Genet 27: 159–166

    Article  CAS  PubMed  Google Scholar 

  55. Crisponi L et al. (2004) FOXL2 inactivation by a translocation 171 kb away: analysis of 500 kb of chromosome 3 for candidate long-range regulatory sequences. Genomics 83: 757–764

    Article  CAS  PubMed  Google Scholar 

  56. Uda M et al. (2004) Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet 13: 1171–1181

    Article  CAS  PubMed  Google Scholar 

  57. Schmidt D et al. (2004) The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 131: 933–942

    Article  CAS  PubMed  Google Scholar 

  58. Pailhoux E et al. (2001) A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat Genet 29: 453–458

    Article  CAS  PubMed  Google Scholar 

  59. Pannetier M et al. (2005) Ovarian-specific expression of a new gene regulated by the goat PIS region and transcribed by a FOXL2 bidirectional promoter. Genomics 85: 715–726

    Article  CAS  PubMed  Google Scholar 

  60. Pailhoux E et al. (2002) Ontogenesis of female-to-male sex-reversal in XX polled goats. Dev Dyn 224: 39–50

    Article  CAS  PubMed  Google Scholar 

  61. Vainio S et al. (1999) Female development in mammals is regulated by Wnt-4 signalling. Nature 397: 405–409

    Article  CAS  PubMed  Google Scholar 

  62. Jeays-Ward C et al. (2003) Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development 130: 3663–3670

    Article  CAS  PubMed  Google Scholar 

  63. Biason-Lauber A et al. (2004) A WNT4 mutation associated with müllerian duct regression and virilization in a 46,XX woman. N Engl J Med 351: 792–798

    Article  CAS  PubMed  Google Scholar 

  64. Jeays-Ward C et al. (2004) Wnt4 is required for proper male as well as female sexual development. Dev Biol 276: 431–440

    Article  CAS  PubMed  Google Scholar 

  65. Jordan BK et al. (2001) Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am J Hum Genet 68: 1102–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jordan BK et al. (2003) Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/b-catenin synergy. Proc Natl Acad Sci USA 100: 10866–10871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yao HH et al. (2004) Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn 230: 210–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ottolenghi C et al. (2001) Absence of mutations involving the LIM homeobox domain gene LHX9 in 46,XY gonadal agenesis and dysgenesis. J Clin Endocrinol Metab 86: 2465–2469

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Swain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Val, P., Swain, A. Mechanisms of Disease: normal and abnormal gonadal development and sex determination in mammals. Nat Rev Urol 2, 616–627 (2005). https://doi.org/10.1038/ncpuro0354

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/ncpuro0354

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing