Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

γ-Aminobutyric Acid Uptake by Sympathetic Ganglia

Abstract

EXOGENOUS γ-aminobutyric acid (GABA) accumulates against a concentration gradient in isolated mammalian nervous tissue1–3 and mixes with GABA stored in the tissue4. Thus, neurones which use GABA as an inhibitory transmitter might be identified by locating sites of accumulation of radioactively-labelled GABA using autoradiography5–7, assuming that exogenous GABA is only taken up into neurones already containing GABA. A correlation between GABA uptake and endogenous content has been noted in slices from different parts of the brain3 and in different nerve-ending fractions8–10. These experiments, however, do not show whether GABA can be accumulated in nerve tissue totally devoid of “gabanergic” neurones. To test this, we have measured the uptake of GABA by isolated sympathetic ganglia. The principal transmitter in the ganglion is acetylcholine while the postganglionic neurones are mainly adrenergic. By analogy with the brain, the ganglion contains negligible amounts of GABA, glutamic decarboxylase or GABA-transaminase11,12.

This is a preview of subscription content, access via your institution

Access options

References

  1. Elliott, K., and Van Gelder, N., J. Neurochem., 3, 28 (1956).

    Article  Google Scholar 

  2. Iversen, L. L., and Neal, M. J., J. Neurochem., 15, 1141 (1968).

    Article  CAS  Google Scholar 

  3. Hokfelt, T., Jonsson, G., and Ljungdahl, A., Life Sci., 9, 203 (1970).

    Article  CAS  Google Scholar 

  4. Neal, M. J., and Iversen, L. L., J. Neurochem., 16, 1245 (1969).

    Article  CAS  Google Scholar 

  5. Hokfelt, T., and Ljungdahl, A., Brain Res., 22, 391 (1970).

    Article  CAS  Google Scholar 

  6. Ehinger, B., Experientia, 26, 1063 (1970).

    Article  CAS  Google Scholar 

  7. Bloom, F. E., and Iversen, L. L., Nature, 229, 628 (1971).

    Article  CAS  Google Scholar 

  8. Iversen, L. L., and Snyder, S. H., Nature, 220, 796 (1968).

    Article  CAS  Google Scholar 

  9. Kuhar, M. J., Green, A. I., Snyder, S. H., and Gfeller, E., Brain Res., 21, 405 (1970).

    Article  CAS  Google Scholar 

  10. Kuhar, M. J., Shaskan, E. G., and Snyder, S. H., J. Neurochem., 18, 33 (1971).

    Google Scholar 

  11. Nagata, Y., Yokoi, Y., and Tsukada, Y., J. Neurochem., 13, 1421 (1966).

    Article  CAS  Google Scholar 

  12. Salvador, R. A., and Albers, R. W., J. Biol. Chem., 234, 922 (1959).

    CAS  PubMed  Google Scholar 

  13. Larrabee, M. G., and Klingman, J. D., in Neurochemistry (edit. by Elliott, K. A. C., Page, I. H., and Quastel, J. H., 150 (1962).

    Google Scholar 

  14. Brown, D. A., Brit. J. Pharmacol, 26, 511 (1966).

    CAS  PubMed  Google Scholar 

  15. Brown, D. A., Halliwell, J. V., and Sholfield, C. N., Brit. J. Pharmac, 42, 100 (1971).

    Article  CAS  Google Scholar 

  16. Neal, M. J., and Pickles, H., Nature, 223, 679 (1969).

    Article  Google Scholar 

  17. Johnston, G., and Iversen, L., J. Neurochem., 18, 1951 (1971).

    Article  CAS  Google Scholar 

  18. DeGroat, W. C., J. Pharmacol. Exp. Ther., 172, 384 (1970).

    CAS  Google Scholar 

  19. Sowery, N. G., and Brown, D. A., Brit. J. Pharmac. 45, 160P (1972).

    Google Scholar 

  20. DeGroat, W. C., Lalley, P. M., and Block, M., Brain Res., 25, 665 (1971).

    Article  CAS  Google Scholar 

  21. Schultz, S. G., and Curran, P. F., Physiol. Rev., 50, 637 (1970).

    Article  CAS  Google Scholar 

  22. Iversen, L. L., and Johnston, G. A. R., J. Neurochem., 18, 1939 (1971).

    Article  CAS  Google Scholar 

  23. Machiyama, Y., Balazs, R., and Richter, D., J. Neurochem., 14, 591 (1967).

    Article  CAS  Google Scholar 

  24. Katz, R. I., Chase, T. N., and Kopin, L. J., J. Neurochem., 16, 961 (1969).

    Article  CAS  Google Scholar 

  25. Srinivasan, V., Neal, M. J., and Mitchell, J. F., J. Neurochem., 16, 1235 (1969).

    Article  CAS  Google Scholar 

  26. Brown, D. A., and Sholfield, C. N., Brit. J. Pharmacol., 45, 29 (1972).

    Article  CAS  Google Scholar 

  27. Harris, E. J., and McLennan, H., J. Physiol., 121, 629 (1953).

    Article  CAS  Google Scholar 

  28. Brinley, jun., F. J., J. Neurophysiol., 30, 1531 (1967).

    Article  CAS  Google Scholar 

  29. Nicholls, J. G., and Kuffler, S. W., J. Neurophysiol., 27, 654 (1964).

    Article  Google Scholar 

  30. Mitchell, J. F., and Srinivasan, V., Nature, 224, 663 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BOWERY, N., BROWN, D. γ-Aminobutyric Acid Uptake by Sympathetic Ganglia. Nature New Biology 238, 89–91 (1972). https://doi.org/10.1038/newbio238089a0

Download citation

  • Received:

  • Revised:

  • Issue date:

  • DOI: https://doi.org/10.1038/newbio238089a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing