Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gene targeting in normal somatic cells: inactivation of the interferon–γ receptor in myoblasts

Abstract

Gene targeting in somatic cells represents a potentially powerful method for gene therapy, yet with the exception of pluripotent mouse embryonic stem (ES) cells, homologous recombination has not been reported for a well characterized, non–transformed mammalian cell. Applying a highly efficient strategy for targeting an integral membrane protein — the interferon γ receptor — in ES cells, we have used homologous recombination to target a non–transformed somatic cell, the mouse myoblast, and to compare targeting efficiencies in these two cell types. Gene–targeted myoblasts display the properties of normal cells including normal morphology, ability to differentiate in vitro, stable diploid karyotype, inability to form colonies in soft agar and lack of tumorigenicity in nude mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Camerini-Otero, R.D. & Kucherlapati, R. Right on target. New. Biol. 2, 337–341 (1990).

    CAS  PubMed  Google Scholar 

  2. Patrusky, B. DNA on target. Mosaic 21, 44–52 (1990).

    Google Scholar 

  3. Waldman, A.S. Targeted homologous recombination in mammalian cells. Crit. Rev. Oncol. Hematol. 12, 49–64 (1992).

    Article  CAS  Google Scholar 

  4. Capecchi, M.R. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  CAS  Google Scholar 

  5. Bradley, A., Hasty, P., Davis, A. & Ramirez-Solis, R. Modifying the mouse: design and desire. Biotechnology 10, 534–539 (1992).

    CAS  Google Scholar 

  6. Koller, B.H. & Smithies, O. Altering genes in animals by gene targeting. Annu. Rev. Immunol. 10, 705–730 (1992).

    Article  CAS  Google Scholar 

  7. Jasin, M. & Berg, P. Homologous integration in mammalian cells without target gene selection. Genes Devl. 2, 1353–1363 (1988).

    Article  CAS  Google Scholar 

  8. Sedivy, J.M. & Sharp, P.A. Positive genetic selection for gene disruption in mammalian cells by homologous recombination. Proc. natn. Acad. Sci. U.S.A. 86, 227–231 (1989).

    Article  CAS  Google Scholar 

  9. Fell, H.P., Yamold, S., Hellstrom, I., Hellstrom, K.E. & Folger, K.R. Homologous recombination in hybridoma cells: heavy chain chimeric antibody produced by gene targeting. Proc. natn. Acad. Sci. U.S.A. 86, 8507–8511 (1989).

    Article  CAS  Google Scholar 

  10. Charron, J., Malynn, B.A., Robertson, E.J., Goff, S.P. & Alt, F.W. High-frequency disruption of the N-myc gene in embryonic stem and pre-B cell lines by homologous recombination. Molec. Cell Biol. 10, 1799–1804 (1990).

    Article  CAS  Google Scholar 

  11. Accili, D. & Taylor, S.I. Targeted inactivation of the insulin receptor gene in mouse 3T3-L1 fibroblasts via homologous recombination. Proc. natn. Acad. Sci. U.S.A. 88, 4708–4712 (1991).

    Article  CAS  Google Scholar 

  12. Zheng, H. et al. Fidelity of targeted recombination in human fibroblasts and murine embryonic stem cells. Proc. natn. Acad. Sci. U.S.A. 88, 8067–8071 (1991).

    Article  CAS  Google Scholar 

  13. Mauro, A. Satellite cells of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495 (1961).

    Article  CAS  Google Scholar 

  14. Partridge, T.A., Grounds, M. & Sloper, J.C. Evidence effusion between host and donor myoblasts in skeletal muscle grafts. Nature 273, 306–308 (1978).

    Article  CAS  Google Scholar 

  15. Gussoni, E. et al. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 356, 435–438 (1992).

    Article  CAS  Google Scholar 

  16. Barr, E. & Leiden, J.M. Systemic delivery of recombinant proteins by genetically modified myoblasts. Science 254, 1507–1509 (1991).

    Article  CAS  Google Scholar 

  17. Dhawan, J. et al. Systemic delivery of human growth hormone by injection of genetically engineered myoblasts. Science 254, 1509–1512 (1991).

    Article  CAS  Google Scholar 

  18. Partridge, T.A. Myoblast transfer: a possible therapy for inherited myopathies? Muscle Nerve. 14, 197–212 (1991).

    Article  CAS  Google Scholar 

  19. Trinchieri, G. & Perussia, B. Immune interferon: a pleiotropic lymphokine with multiple effects. Immunol. Today 6, 131–136 (1985).

    Article  CAS  Google Scholar 

  20. Pestka, S., Langer, J.A., Zoon, K.C. & Samuel, C.E. Interferons and their actions. A. Rev. Biochem. 56, 727–777 (1987).

    Article  CAS  Google Scholar 

  21. Farrar, M.A. & Schreiber, R.D. The molecular cell biology of interferon-γ and its receptor. A Rev. Immunol. 11, 571–611 (1993).

    Article  CAS  Google Scholar 

  22. Aguet, M., Dembic, Z. & Merlin, G. Molecular cloning and expression of the human interferon-γ receptor. Cell 55 273–280 (1988).

    Article  CAS  Google Scholar 

  23. Rosa, F. & Fellous, M. The effect of gamma-interferon on MHC antigens. Immunol. Today 5, 261–262 (1984).

    Article  CAS  Google Scholar 

  24. Doetschman, T., Maeda, N. & Smithies O. Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proc. natn. Acad. Sci. U.S.A. 85, 8583–8587 (1988).

    Article  CAS  Google Scholar 

  25. Schwartzberg, P.L., Robertson, E.J. & Goff, S.P. Targeted gene disruption of the endogenous c-abl locus by homologous recombination with DNA encoding a selectable fusion protein. Proc. natn. Acad. Sci. U.S.A. 87, 3210–3214 (1990).

    Article  CAS  Google Scholar 

  26. te Riele, H., Maandag, E.R., Clarke, A., Hooper, M. & Berns, A. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 348, 649–651 (1990).

    Article  CAS  Google Scholar 

  27. Jeanotte, L., Ruiz, J.C. & Robertson, E.J. Low level of Hox1. 3 gene expression does not preclude the use of promoterless vectors to generate a targeted gene disruption. Molec. Cell Biol. 11, 5578–5585 (1991).

    Article  Google Scholar 

  28. Hemmi, S. et al. Cloning of murine interferon γ receptor cDNA: expression in human cells mediates high-affinity binding but is not sufficient to confer sensitivity to murine interferon γ. Proc. natn. Acad. Sci. U.S.A. 86, 9901–9905 (1989).

    Article  CAS  Google Scholar 

  29. Austin, H.A., Gurley, K. & Greenburg, G. Muscle satellite cells isolated from mice can be maintained in culture for long periods without the changes associated with cell transformation. In Vitro 29A, 105A (1993).

    Google Scholar 

  30. Farrar, M.A., Fernandez-Luna, J. & Schreiber, R.D. Identification of two regions within the cytoplasmic domain of the human interferon-gamma receptor required for function. J. biol. Chem. 266, 19626–19635 (1991).

    CAS  PubMed  Google Scholar 

  31. Basu, M., Pace, J.L., Pinson, D.M. & Russell, S.W. A monoclonal antibody against the ligand binding site of the receptor for mouse interferon-γ. J. Interferon Res. 9, 551–562 (1989).

    Article  CAS  Google Scholar 

  32. Nesbitt, M.N. & Francke, U. A system of nomenclature for band patterns of mouse chromosomes. Chromosoma 41, 145–158 (1973).

    Article  CAS  Google Scholar 

  33. Steeg, C.M., Ellis, J. & Bernstein, A. Introduction of specific point mutations into RNA polymerase II by gene targeting in mouse embryonic stem cells: evidence for DNA mismatch repair mechanism. Proc. natn. Acad. Sci. U.S.A. 87, 4680–4684 (1990).

    Article  CAS  Google Scholar 

  34. Valancius, V. & Smithies, O. Testing an “in-out” targeting procedure for making subtle genomic modifications in mouse embryonic stem cells. Molec. Cell Biol. 11, 1402–1408 (1991).

    Article  CAS  Google Scholar 

  35. Thomas, K.R., Deng, C. & Capecchi, M.R. High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Molec. Cell Biol. 12, 2919–2923 (1992).

    Article  CAS  Google Scholar 

  36. Roth, D. & Wilson, J. in Genetic recombination (eds Kucheriapati, R. & Smith, G.R.) 621–653 (American Society for Microbiology, Washington, 1988).

    Google Scholar 

  37. Mortensen, R.M., Conner, D.A., Chao, S., Geisterfer-Lowrance, A.A.T. & Seidman, J.G. Production of homozygous mutant ES cells with a single targeting construct. Molec. Cell Biol. 12, 2391–2395 (1992).

    Article  CAS  Google Scholar 

  38. Jakobovits, A. et al. Analysis of homozygous mutant chimeric mice: deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production. Proc. natn. Acad. Sci. U.S.A. 90, 2551–2555 (1993).

    Article  CAS  Google Scholar 

  39. Germain, R.N. & Margulies, D.H. The biochemistry and cell biology of antigen processing and presentation. A. Rev. Immunol. 11, 403–450 (1993).

    Article  CAS  Google Scholar 

  40. Trowsdale, J. et al. Sequences encoded in the class II region of the MHC related to the ‘ABC’ superfamily of transporters. Nature 348, 741–744 (1990).

    Article  CAS  Google Scholar 

  41. Bao, S., King, N.J.C. & dos Remedios, C.G. Elevated MHC class I and II antigens in cultured human embryonic myoblasts following stimulation with γ-interferon. Immunol. Cell Biol. 68, 235–242 (1990).

    Article  Google Scholar 

  42. Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–295 (1987).

    Article  CAS  Google Scholar 

  43. Robertson, E.J. in Teratocarcinomas and embryonic stem cells: a practical approach, (ed. Robertson, E.J.) 71–112 (IRL, Oxford, 1987).

    Google Scholar 

  44. Kuhn, R., Rajewsky, K. & Muller, W. Generation and analysis of interteukin-4 deficient mice. Science 254, 707–710 (1991).

    Article  CAS  Google Scholar 

  45. Koller, B.H. & Smithies, O. Inactivating the β2-microglobulin locus in mouse embryonic stem cells by homologous recombination. Proc. natn. Acad. Sci. U.S.A. 86, 8932–8935 (1989).

    Article  CAS  Google Scholar 

  46. Worton, R.G. & Duff, C., Karyotyping. Meth. Enzymol. 58, 322–344 (1979).

    Article  CAS  Google Scholar 

  47. Verma, R.S. & Babu, A. in Human chromosomes: Manual of basic techniques 45–113 (Pergamon Press, New York. 1989).

    Google Scholar 

  48. Macpherson, I. & Montagnier, L. Agar suspension culture for the selective assay of cells transformed by polyoma virus. Virology 23, 291–294 (1964).

    Article  CAS  Google Scholar 

  49. Rastinejad, F. & Blau, H.M. Genetic complementation reveals a novel regulatory role for 3′ untranslated regions in growth and differentiation. Cell 72, 903–917 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbonés, M., Austin, H., Capon, D. et al. Gene targeting in normal somatic cells: inactivation of the interferon–γ receptor in myoblasts. Nat Genet 6, 90–97 (1994). https://doi.org/10.1038/ng0194-90

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/ng0194-90

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing