Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands

A Corrigendum to this article was published on 01 June 2010

This article has been updated

Abstract

Despite the paradigm that the innate immune system uses nucleic acid–specific receptors to detect viruses because of a lack of other conserved features, many viruses are recognized by Toll-like receptor 2 (TLR2) and TLR4. The relevance of this recognition for antiviral immunity remains largely unexplained. Here we report that TLR2 activation by viruses led to the production of type I interferon. TLR2-dependent induction of type I interferon occurred only in response to viral ligands, which indicates that TLR2 is able to discriminate between pathogen classes. We demonstrate that this specialized response was mediated by Ly6Chi inflammatory monocytes. Thus, the innate immune system can detect certain non–nucleic acid features of viruses and links this recognition to the induction of specific antiviral genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TLR2-mediated recognition of vaccinia virus and MCMV.
Figure 2: TLR2 induces the production of type I interferon in response to virus.
Figure 3: Differences in the induction of type I interferon by TLR2 in response to viral and bacterial ligands.
Figure 4: A population of CD11b+CD11c cells is responsible for TLR2-dependent production of type I interferon.
Figure 5: Ly6Chi IMs produce IFN-β in response to vaccinia virus.
Figure 6: IMs are required for early production of type I interferon and efficient viral clearance in vivo.
Figure 7: TLR2-dependent production of type I interferon requires receptor internalization.

Similar content being viewed by others

Change history

  • 12 November 2009

    In the version of this article initially published, the label along the vertical axis of the top row in Figure 6a is incorrect. The correct label should be Ly6G, and the related text in the legend should read “Numbers adjacent to outlined areas indicate Ly6G+CD11b+ cells (top row) or Ly6C+CD11b+ cells (bottom row).” The error has been corrected in the HTML and PDF versions of the article.

References

  1. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    Article  CAS  Google Scholar 

  2. Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nat. Immunol. 7, 131–137 (2006).

    Article  CAS  Google Scholar 

  3. Burckstummer, T. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10, 266–272 (2009).

    Article  Google Scholar 

  4. Fernandes-Alnemri, T., Yu, J.W., Datta, P., Wu, J. & Alnemri, E.S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

    Article  CAS  Google Scholar 

  5. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    Article  CAS  Google Scholar 

  6. Roberts, T.L. et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323, 1057–1060 (2009).

    Article  CAS  Google Scholar 

  7. Stetson, D.B. & Medzhitov, R. Type I interferons in host defense. Immunity 25, 373–381 (2006).

    Article  CAS  Google Scholar 

  8. van den Broek, M.F., Muller, U., Huang, S., Zinkernagel, R.M. & Aguet, M. Immune defence in mice lacking type I and/or type II interferon receptors. Immunol. Rev. 148, 5–18 (1995).

    Article  CAS  Google Scholar 

  9. Gilliet, M., Cao, W. & Liu, Y.J. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol. 8, 594–606 (2008).

    Article  CAS  Google Scholar 

  10. Kadowaki, N. et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–869 (2001).

    Article  CAS  Google Scholar 

  11. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  Google Scholar 

  12. Auerbuch, V., Brockstedt, D.G., Meyer-Morse, N., O'Riordan, M. & Portnoy, D.A. Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J. Exp. Med. 200, 527–533 (2004).

    Article  CAS  Google Scholar 

  13. O'Connell, R.M. et al. Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J. Exp. Med. 200, 437–445 (2004).

    Article  CAS  Google Scholar 

  14. Boehme, K.W., Guerrero, M. & Compton, T. Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J. Immunol. 177, 7094–7102 (2006).

    Article  CAS  Google Scholar 

  15. Compton, T. et al. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol. 77, 4588–4596 (2003).

    Article  CAS  Google Scholar 

  16. Szomolanyi-Tsuda, E., Liang, X., Welsh, R.M., Kurt-Jones, E.A. & Finberg, R.W. Role for TLR2 in NK cell-mediated control of murine cytomegalovirus in vivo. J. Virol. 80, 4286–4291 (2006).

    Article  CAS  Google Scholar 

  17. Sato, A., Linehan, M.M. & Iwasaki, A. Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells. Proc. Natl. Acad. Sci. USA 103, 17343–17348 (2006).

    Article  CAS  Google Scholar 

  18. Kurt-Jones, E.A. et al. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc. Natl. Acad. Sci. USA 101, 1315–1320 (2004).

    Article  CAS  Google Scholar 

  19. Chang, S., Dolganiuc, A. & Szabo, G. Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins. J. Leukoc. Biol. 82, 479–487 (2007).

    Article  CAS  Google Scholar 

  20. Zhou, S. et al. MyD88 is critical for the development of innate and adaptive immunity during acute lymphocytic choriomeningitis virus infection. Eur. J. Immunol. 35, 822–830 (2005).

    Article  CAS  Google Scholar 

  21. Bieback, K. et al. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J. Virol. 76, 8729–8736 (2002).

    Article  CAS  Google Scholar 

  22. Zhu, J., Martinez, J., Huang, X. & Yang, Y. Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-beta. Blood 109, 619–625 (2007).

    Article  CAS  Google Scholar 

  23. Toshchakov, V. et al. TLR4, but not TLR2, mediates IFN-β-induced STAT1α/β-dependent gene expression in macrophages. Nat. Immunol. 3, 392–398 (2002).

    Article  CAS  Google Scholar 

  24. Kawai, T. et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 167, 5887–5894 (2001).

    Article  CAS  Google Scholar 

  25. Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251–263 (2002).

    Article  CAS  Google Scholar 

  26. Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119 (2004).

    Article  CAS  Google Scholar 

  27. Tabeta, K. et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat. Immunol. 7, 156–164 (2006).

    Article  CAS  Google Scholar 

  28. Ablasser, A. et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III–transcribed RNA intermediate. Nat. Immunol. 10, 1065–1072 (2009).

    Article  CAS  Google Scholar 

  29. Chiu, Y.-H., MacMillan, J.B. & Chen, Z.J. RNA polymerase III detects cytosolic DNA and induces type interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    Article  CAS  Google Scholar 

  30. Asselin-Paturel, C. et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol. 2, 1144–1150 (2001).

    Article  CAS  Google Scholar 

  31. Jin, M.S. et al. Crystal structure of the TLR1–TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071–1082 (2007).

    Article  CAS  Google Scholar 

  32. Scheu, S., Dresing, P. & Locksley, R.M. Visualization of IFNβ production by plasmacytoid versus conventional dendritic cells under specific stimulation conditions in vivo. Proc. Natl. Acad. Sci. USA 105, 20416–20421 (2008).

    Article  CAS  Google Scholar 

  33. Okusawa, T. et al. Relationship between structures and biological activities of mycoplasmal diacylated lipopeptides and their recognition by Toll-like receptors 2 and 6. Infect. Immun. 72, 1657–1665 (2004).

    Article  CAS  Google Scholar 

  34. Cailhier, J.F. et al. Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J. Immunol. 174, 2336–2342 (2005).

    Article  CAS  Google Scholar 

  35. Auffray, C., Sieweke, M.H. & Geissmann, F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009).

    Article  CAS  Google Scholar 

  36. Geissmann, F., Jung, S. & Littman, D.R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).

    Article  CAS  Google Scholar 

  37. Serbina, N.V., Jia, T., Hohl, T.M. & Pamer, E.G. Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol. 26, 421–452 (2008).

    Article  CAS  Google Scholar 

  38. Kagan, J. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nat. Immunol. 9, 361–368 (2008).

    Article  CAS  Google Scholar 

  39. Lee, P.Y. et al. A novel type I IFN-producing cell subset in murine lupus. J. Immunol. 180, 5101–5108 (2008).

    Article  CAS  Google Scholar 

  40. Krieg, A.M. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 5, 471–484 (2006).

    Article  CAS  Google Scholar 

  41. Ishii, K.J. et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7, 40–48 (2006).

    Article  CAS  Google Scholar 

  42. Stetson, D.B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93–103 (2006).

    Article  CAS  Google Scholar 

  43. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007).

    Article  CAS  Google Scholar 

  44. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  Google Scholar 

  45. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1-β in salmonella-infected macrophages. Nat. Immunol. 7, 576–582 (2006).

    Article  CAS  Google Scholar 

  46. Miao, E.A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1-β via Ipaf. Nat. Immunol. 7, 569–575 (2006).

    Article  CAS  Google Scholar 

  47. Lightfield, K.L. et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat. Immunol. 9, 1171–1178 (2008).

    Article  CAS  Google Scholar 

  48. Smith, K.D. et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4, 1247–1253 (2003).

    Article  CAS  Google Scholar 

  49. Steven, A.C. & Spear, P.G. Biochemistry. Viral glycoproteins and an evolutionary conundrum. Science 313, 177–178 (2006).

    Article  CAS  Google Scholar 

  50. Kurt-Jones, E.A. et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1, 398–401 (2000).

    Article  CAS  Google Scholar 

  51. Jude, B.A. et al. Subversion of the innate immune system by a retrovirus. Nat. Immunol. 4, 573–578 (2003).

    Article  CAS  Google Scholar 

  52. Triantafilou, K. & Triantafilou, M. Coxsackievirus B4-induced cytokine production in pancreatic cells is mediated through toll-like receptor 4. J. Virol. 78, 11313–11320 (2004).

    Article  CAS  Google Scholar 

  53. Georgel, P. et al. Vesicular stomatitis virus glycoprotein G activates a specific antiviral Toll-like receptor 4-dependent pathway. Virology 362, 304–313 (2007).

    Article  CAS  Google Scholar 

  54. Jiang, Z. et al. CD14 is required for MyD88-independent LPS signaling. Nat. Immunol. 6, 565–570 (2005).

    Article  CAS  Google Scholar 

  55. Crimmins, G.T. et al. Listeria monocytogenes multidrug resistance transporters activate a cytosolic surveillance pathway of innate immunity. Proc. Natl. Acad. Sci. USA 105, 10191–10196 (2008).

    Article  CAS  Google Scholar 

  56. Ewald, S.E. et al. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456, 658–662 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Akira (Osaka University) for Myd88−/−Trif−/− mice; D. Portnoy (University of California, Berkeley) for Irf3−/− and Ifnar1−/− mice and ISRE-L929 cells; K. Fitzgerald (University of Massachusetts) for Irf7−/− and Irf3−/−Irf7−/− mice; Z. Chen (University of Texas Southwestern Medical Center) for Mavs−/− mice; D. Raulet (University of California, Berkeley) for vaccinia virus (Western Reserve strain); L. Coscoy (University of California, Berkeley) for MCMV (Smith strain); M. Tokuyama, M. Fontana and K. Camfield for early contributions to this work; M. Mouchess for technical assistance; N. An (Infectious Disease BL2 Core of the Berkeley Center for Host-Pathogen Studies) for help with the production of vaccinia virus; D. Stetson (University of Washington) for key reagents; members of the Barton and Vance labs for discussions and advice; R. Vance and L. Coscoy for comments on the manuscript; and H. Nolla for assistance with flow cytometry. Supported by University of California, the Hellman Family Faculty Fund and the US National Institutes of Health (AI072429 to G.M.B., and GM007232 to R.B.).

Author information

Authors and Affiliations

Authors

Contributions

R.B. and G.M.B. designed the experiments; R.B. and L.L. did the experiments; R.M.L. provided reagents; and R.B. and G.M.B. wrote the manuscript.

Corresponding author

Correspondence to Gregory M Barton.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 4541 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbalat, R., Lau, L., Locksley, R. et al. Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat Immunol 10, 1200–1207 (2009). https://doi.org/10.1038/ni.1792

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni.1792

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing