Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disruption of Erk-dependent type I interferon induction breaks the myxoma virus species barrier

Abstract

Myxoma virus, a member of the poxvirus family, causes lethal infection only in rabbits, but the mechanism underlying the strict myxoma virus species barrier is not known. Here we show that myxoma virus infection of primary mouse embryo fibroblasts elicited extracellular signal–regulated kinase (Erk) signaling, which was integrated to interferon regulatory factor 3 activation and type I interferon induction. We further show that Erk inactivation or disruption of interferon signaling mediated by the transcription factor STAT1 broke the cellular blockade to myxoma virus multiplication. Moreover, STAT1 deficiency rendered mice highly susceptible to lethal myxoma virus infection. Thus, the Erk–interferon–STAT1 signaling cascade elicited by myxoma virus in nonpermissive primary mouse embryo fibroblasts mediates an innate cellular barrier to poxvirus infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Erk1/2 signaling restricts myxoma virus replication.
Figure 2: Type I interferon induction mediates the cellular restriction of myxoma virus replication.
Figure 3: Erk1/2 signaling is required for optimal induction of type I interferon.
Figure 4: STAT1 activation by type I interferon does not require Erk1/2 participation.
Figure 5: Erk1/2 signaling is linked to IRF3 activation.
Figure 6: Myxoma virus infection elicits PKR-independent, STAT1-mediated eIF2α phosphorylation.
Figure 7: PKR, RNase L and Mx1 are not involved in Erk1/2-induced cellular restriction of myxoma virus multiplication.
Figure 8: STAT1 deficiency renders mice highly susceptible to lethal myxoma virus infection.

Similar content being viewed by others

References

  1. Esposito, J.J. & Fenner, F. in Fields Virology 4th edn. (eds. Knipe, D.M. & Howley, P.M.) 2885–2921 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  2. Fenner, F. & Ratcliffe, F.N. Myxomatosis (Cambridge University Press, Cambridge, UK, 1965).

    Google Scholar 

  3. Kerr, P. & McFadden, G. Immune responses to myxoma virus. Viral Immunol. 15, 229–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Moss, B. in Fields Virology 4th edn. (eds. Knipe, D.M. & Howley, P.M.) 2849–2883 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  5. Lalani, A.S. et al. Use of chemokine receptors by poxviruses. Science 286, 1968–1971 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Johnston, J.B. et al. Role of the serine-threonine kinase PAK-1 in myxoma virus replication. J. Virol. 77, 5877–5888 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Condit, R.C. in Fields Virology 4th edn. (eds. Knipe, D.M. & Howley, P.M.) 19–51 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  8. Rao, K.M.K. MAP kinase activation in macrophages. J. Leukoc. Biol. 69, 3–10 (2001).

    CAS  PubMed  Google Scholar 

  9. Greber, U.F. Signaling in viral entry. Cell. Mol. Life Sci. 59, 608–626 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Planz, O., Pleschka, S. & Ludwig, S. MEK-specific inhibitor U0126 blocks spread of Borna disease virus in cultured cells. J. Virol. 75, 4871–4877 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pleschka, S. et al. Influenza virus propogation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat. Cell Biol. 3, 301–305 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Luo, H. et al. Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. J. Virol. 76, 3365–3373 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Andrade, A.A. et al. The vaccinia virus-stimulated mitogen-activated protein kinase (MAPK) pathway is required for virus multiplication. Biochem. J. 381, 437–446 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Booth, J.L., Coggeshall, K.M., Gordon, B.E. & Metcalf, J.P. Adenovirus type 7 induces interleukin-8 in a lung slice model and requires activation of Erk. J. Virol. 78, 4156–4164 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mainiero, F. et al. Integrin-mediated Ras-extracellular regulated kinase (ERK) signaling regulates interferon γ production in human natural killer cells. J. Exp. Med. 188, 1267–1275 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Egerton, M., Fitzpatrick, D.R. & Kelso, A. Activation of the extracellular signal-regulated kinase pathway is differentially required for TCR-stimulated production of six cytokines in primary T lymphocytes. Int. Immunol. 10, 223–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Popik, W., Hesselgesser, J.E. & Pitha, P.M. Binding of human immunodeficiency virus type 1 to CD4 and CXCR4 receptors differentially regulates expression of inflammatory genes and activates the MEK/ERK signaling pathway. J. Virol. 72, 6406–6413 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Samuel, C.E. Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Müller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921 (1994).

    Article  PubMed  Google Scholar 

  20. Levy, D.E. & Darnell Jr., J.E. STATS: Transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3, 651–662 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Levy, D.E., Marié, I., Smith, E. & Prakash, A. Enhancement and diversification of IFN induction by IRF-7-mediated positive feedback. J. Interferon Cytokine Res. 22, 87–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Katze, M.G., He, Y. & Gale Jr., M. Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2, 675–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Taniguchi, T., Ogasawara, K., Takaoka, A. & Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 19, 623–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Peters, K.L., Smith, H.L., Stark, G.R. & Sen, G.C. IRF-3-dependent, NFκB- and JNK-independent activation of the 561 and IFN-β genes in response to double-stranded RNA. Proc. Natl. Acad. Sci. USA 99, 6322–6327 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Favata, M.F. et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 18623–18632 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Brunet, A. et al. Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J. 18, 664–674 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Widmann, C., Gibson, S., Jarpe, M.B. & Johnson, G.L. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79, 143–180 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Pouysségur, J., Volmat, V. & Lenormand, P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem. Pharmacol. 64, 755–763 (2002).

    Article  PubMed  Google Scholar 

  30. Mossman, K. et al. Myxoma virus M-T7, a secreted homolog of the interferon-γ receptor, is a critical virulence factor for the development of myxomatosis in European rabbits. Virology 215, 17–30 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Sale, E.M., Atkinson, P.G.P. & Sale, G.J. Requirement of MAP kinase for differentiation of fibroblasts to adipocytes, for insulin activation of p90 S6 kinase and for insulin or serum stimulation of DNA synthesis. EMBO J. 14, 674–684 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Robinson, C.J.M. et al. Treatment of vascular smooth muscle cells with antisense phosphorothioate oligodeoxynucleotides directed against p42 and p44 mitogen-activated protein kinases abolishes DNA synthesis in response to platelet-derived growth factor. Biochem. J. 320, 123–127 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stark, G.R., Kerr, I.M., Williams, B.R.G., Silverman, R.H. & Schreiber, R.D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. David, M. et al. Requirement for MAP kinase (ERK2) activity in interferon α- and interferon β-stimulated gene expression through STAT proteins. Science 269, 1721–1723 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. McWhirter, S.M., Fitzgerald, K.A., Rosains, J., Rowe, D.C. & Golenbock, D.T. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc. Natl. Acad. Sci. USA 101, 233–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Fitzgerald, K.A. et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Smith, E.J., Marié, I., Prakash, A., García-Sastre, A. & Levy, D.E. IRF3 and IRF7 phosphorylation in virus-infected cells does not require double-stranded RNA-dependent protein kinase R or IκB kinase but is blocked by vaccinia virus E3L protein. J. Biol. Chem. 276, 8951–8957 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Marié, I., Durbin, J.E. & Levy, D.E. Differential viral induction of distinct interferon-α genes by positive feedback through interferon regulatory factor-7. EMBO J. 17, 6660–6669 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jacobs, B.L. & Langland, J.O. When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 219, 339–349 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Williams, B.R.G. PKR; a sentinel kinase for cellular stress. Oncogene 18, 6112–6120 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Schneider-Schaulies, J. Cellular receptors for viruses: links to tropism and pathogenesis. J. Gen. Virol. 81, 1413–1429 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Pearson, G. et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153–183 (2001).

    CAS  PubMed  Google Scholar 

  43. Schaeffer, H.J. & Weber, M.J. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19, 2435–2444 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maruoka, S., Hashimoto, S., Gon, Y., Takeshita, I. & Horie, T. PAF-induced RANTES production by human airway smooth muscle cells requires both p38 MAP kinase and Erk. Am. J. Respir. Crit. Care Med. 161, 922–929 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, Y.L. et al. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 14, 6095–6106 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meraz, M.A. et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Zhou, A., Paranjape, J.M., Der, S.D., Williams, B.R.G. & Silverman, R.H. Interferon action in triply deficient mice reveals the existence of alternative antiviral pathways. Virology 258, 435–440 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Li, Y., Hall, R.L. & Moyer, R.W. Transient, nonlethal expression of genes in vertebrate cells by recombinant entomopoxviruses. J. Virol. 71, 9557–9562 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. van Berkel, V. et al. Critical role for a high-affinity chemokine-binding protein in γ-herpesvirus-induced lethal meningitis. J. Clin. Invest. 109, 905–914 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Asselin-Paturel, C. et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat. Immunol. 2, 1144–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Schreiber, G. Stark, H. Nguyen, A. Koromilas, D. Frank, R. Silverman, B. Williams, J. Ihle, M. Aguet, K. Mossman and D. Barber for their advice and reagents, which helped in the development of this project, and D. Hall for help with the manuscript. Supported by the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant McFadden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Ma, Y., Barrett, J. et al. Disruption of Erk-dependent type I interferon induction breaks the myxoma virus species barrier. Nat Immunol 5, 1266–1274 (2004). https://doi.org/10.1038/ni1132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni1132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing