Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Minimal activation of memory CD8+ T cell by tissue-derived dendritic cells favors the stimulation of naive CD8+ T cells

Abstract

Of the many dendritic cell (DC) subsets, DCs expressing the monomorphic coreceptor CD8 α-chain (CD8α) are localized permanently in lymphoid organs, whereas 'tissue-derived DCs' remain in nonlymphoid tissues until they 'capture' antigen and then move to local lymph nodes. Here we show that after lung infection, both naive and memory CD8+ 'killer' T cells responded to influenza virus antigens presented by lymph node–resident CD8α+ DCs, but only naive cells responded to antigens presented by lung-derived DCs. This difference provides a mechanism for priming naive T cell responses in conditions in which robust memory predominates. Our findings have implications for immunity to pathogens that can mutate their T cell epitopes, such as influenza virus and human immunodeficiency virus, and challenge the long-held view that memory T cells have less-stringent requirements for activation than naive T cells have.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Naive but not memory CD8+ T cells proliferate in response to lung-derived DCs from the mediastinal lymph nodes of mice infected with influenza virus.
Figure 2: Prolonged antigen presentation by lung-derived DCs allows in vivo population expansion of naive but not memory antigen-specific CD8+ T cells late in infection.
Figure 3: Capacity of DC subtypes to stimulate naive and memory CD8+ T cells.
Figure 4: Competition between naive and memory T cells in vivo.

Similar content being viewed by others

References

  1. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zammit, D.J., Cauley, L.S., Pham, Q.M. & Lefrancois, L. Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22, 561–570 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Belz, G.T. et al. Bone marrow-derived cells expand memory CD8+ T cells in response to viral infections of the lung and skin. Eur. J. Immunol. 36, 327–335 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Villadangos, J.A. & Heath, W.R. Life cycle, migration and antigen presenting functions of spleen and lymph node dendritic cells: limitations of the Langerhans cells paradigm. Semin. Immunol. 17, 262–272 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Heath, W.R. et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199, 9–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Shortman, K. & Liu, Y. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151–161 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Grouard, G. et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185, 1101–1111 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5, 919–923 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Vremec, D., Pooley, J., Hochrein, H., Wu, L. & Shortman, K. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. 164, 2978–2986 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Henri, S. et al. Hierarchy of susceptibility of dendritic cell subsets to infection by Leishmania major: inverse relationship to interleukin-12 production. Infect. Immun. 70, 3874–3880 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shortman, K. & Naik, S.H. Steady-state and inflammatory dendritic-cell development. Nature Rev. Immunol. 7, 19–30 (2007).

    Article  CAS  Google Scholar 

  12. Macatonia, S.E., Knight, S.C., Edwards, A.J., Griffiths, S. & Fryer, P. Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies. J. Exp. Med. 166, 1654–1667 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Leon, B., Lopez-Bravo, M. & Ardavin, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Smith, C.M. et al. Cutting edge: conventional CD8α+ dendritic cells are preferentially involved in CTL priming after footpad infection with herpes simplex virus-1. J. Immunol. 170, 4437–4440 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Allan, R.S. et al. Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science 301, 1925–1928 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Belz, G.T., Shortman, K., Bevan, M.J. & Heath, W.R. CD8α+ dendritic cells selectively present MHC class I–restricted noncytolytic viral and intracellular bacterial antigens in vivo. J. Immunol. 175, 196–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Belz, G.T. et al. Cutting edge: conventional CD8α+ dendritic cells are generally involved in priming CTL immunity to viruses. J. Immunol. 172, 1996–2000 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Belz, G.T. et al. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc. Natl. Acad. Sci. USA 101, 8670–8675 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Allan, R.S. et al. Migratory dendritic cells transfer antigen to a lymph node–resident dendritic cell population for efficient CTL priming. Immunity 25, 153–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Carbone, F.R., Belz, G.T. & Heath, W.R. Transfer of antigen between migrating and lymph node–resident DCs in peripheral T-cell tolerance and immunity. Trends Immunol. 25, 655–658 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Croft, M., Bradley, L.M. & Swain, S.L. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J. Immunol. 152, 2675–2685 (1994).

    CAS  PubMed  Google Scholar 

  22. Byrne, J.A., Butler, J.L. & Cooper, M.D. Differential activation requirements for virgin and memory T cells. J. Immunol. 141, 3249–3257 (1988).

    CAS  PubMed  Google Scholar 

  23. Weninger, W., Crowley, M.A., Manjunath, N. & von Andrian, U.H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 194, 953–966 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blaney, J.E., Jr. et al. Immunization with a single major histocompatibility complex class I–restricted cytotoxic T-lymphocyte recognition epitope of herpes simplex virus type 2 confers protective immunity. J. Virol. 72, 9567–9574 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Klenerman, P. & Zinkernagel, R.M. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature 394, 482–485 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Mongkolsapaya, J. et al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat. Med. 9, 921–927 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Turner, S.J., Cross, R., Xie, W. & Doherty, P.C. Concurrent naive and memory CD8+ T cell responses to an influenza A virus. J. Immunol. 167, 2753–2758 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Soares, H. et al. A subset of dendritic cells induces CD4+ T cells to produce IFN-γ by an IL-12–independent but CD70-dependent mechanism in vivo. J. Exp. Med. 204, 1095–1106 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tian, T., Woodworth, J., Skold, M. & Behar, S.M. In vivo depletion of CD11c+ cells delays the CD4+ T cell response to Mycobacterium tuberculosis and exacerbates the outcome of infection. J. Immunol. 175, 3268–3272 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Dewalick, S. et al. Cutting edge: conventional dendritic cells are the critical APC required for the induction of experimental cerebral malaria. J. Immunol. 178, 6033–6037 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Fleeton, M.N. et al. Peyer's patch dendritic cells process viral antigen from apoptotic epithelial cells in the intestine of reovirus-infected mice. J. Exp. Med. 200, 235–245 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. He, Y., Zhang, J., Donahue, C. & Falo, L.D., Jr. Skin-derived dendritic cells induce potent CD8+ T cell immunity in recombinant lentivector-mediated genetic immunization. Immunity 24, 643–656 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Phillips, R.E. et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354, 453–459 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Pircher, H. et al. Viral escape by selection of cytotoxic T cell–resistant virus variants in vivo. Nature 346, 629–633 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Weiner, A. et al. Persistent hepatitis C virus infection in a chimpanzee is associated with emergence of a cytotoxic T lymphocyte escape variant. Proc. Natl. Acad. Sci. USA 92, 2755–2759 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Voeten, J.T. et al. Antigenic drift in the influenza A virus (H3N2) nucleoprotein and escape from recognition by cytotoxic T lymphocytes. J. Virol. 74, 6800–6807 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mueller, S.N., Heath, W.R., Carbone, F.R. & Jones, C.M. The characterisation of two transgenic mice specific for herpes simplex virus. Immunol. Cell Biol. 80, 156–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Smith, C.M. et al. Cognate CD4+ T cell licensing of dendritic cells in CD8+ T cell immunity. Nat. Immunol. 5, 1143–1148 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Belz, G.T. et al. The CD8α+ dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J. Exp. Med. 196, 1099–1104 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Manjunath, N. et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J. Clin. Invest. 108, 871–878 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Klebanoff, C.A. et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc. Natl. Acad. Sci. USA 101, 1969–1974 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klebanoff, C.A. et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc. Natl. Acad. Sci. USA 102, 9571–9576 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wong, P. & Pamer, E.G. Feedback regulation of pathogen-specific T cell priming. Immunity 18, 499–511 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Langley, M. Camilleri and the WEHI Flow Cytometry Facility for technical assistance; and J. Miller for discussions. Supported by the National Health and Medical Research Council (Australia), the Wellcome Trust (G.T.B.), the Howard Hughes Medical Institute (G.T.B. and W.R.H.) and the Deutsche Forschungsgemeinschaft (BE 3285/1-1 and BE 3285/1-2 to S.B.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabrielle T Belz or William R Heath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 323 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belz, G., Bedoui, S., Kupresanin, F. et al. Minimal activation of memory CD8+ T cell by tissue-derived dendritic cells favors the stimulation of naive CD8+ T cells. Nat Immunol 8, 1060–1066 (2007). https://doi.org/10.1038/ni1505

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ni1505

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing