Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polymer multilayer tattooing for enhanced DNA vaccination

Abstract

DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These ‘multilayer tattoo’ DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of quick-release vaccine-loaded microneedle coatings.
Figure 2: LbL assembly of microneedle coatings carrying DNA, immunostimulatory RNA, and transfection agents.
Figure 3: PNMP release-layers promote rapid implantation of multilayer films at microneedle penetration sites in vivo.
Figure 4: Implanted films control the physical and functional persistence of pDNA and poly(I:C) in vivo.
Figure 5: Microneedle tattooing with multilayer films carrying pDNA and poly(I:C) generates potent cellular and humoral immunity against a model HIV antigen.
Figure 6: Multilayer tattooing enhances transfection in non-human primate skin.

Similar content being viewed by others

References

  1. Kutzler, M. A. & Weiner, D. B. DNA vaccines: Ready for prime time? Nature Rev. Genet. 9, 776–788 (2008).

    CAS  Google Scholar 

  2. Rice, J., Ottensmeier, C. H. & Stevenson, F. K. DNA vaccines: Precision tools for activating effective immunity against cancer. Nature Rev. Cancer 8, 108–120 (2008).

    CAS  Google Scholar 

  3. Ulmer, J. B., Wahren, B. & Liu, M. A. Gene-based vaccines: Recent technical and clinical advances. Trends Mol. Med. 12, 216–222 (2006).

    CAS  Google Scholar 

  4. Sardesai, N. Y. & Weiner, D. B. Electroporation delivery of DNA vaccines: Prospects for success. Curr. Opin. Immunol. 23, 421–429 (2011).

    CAS  Google Scholar 

  5. Weir, E. & Hatch, K. Preventing cold chain failure: Vaccine storage and handling. Can. Med. Assoc. J. 171, 1050 (2004).

    Google Scholar 

  6. Rapiti, E., Pruss-Ustun, A. & Hutin, Y. WHO Environmental Burden of Disease Series (World Health Organization, 2003).

    Google Scholar 

  7. Dicko, M. et al. Safety of immunization injections in Africa: Not simply a problem of logistics. Bull. World Health Org. 78, 163–169 (2000).

    CAS  Google Scholar 

  8. Giudice, E. L. & Campbell, J. D. Needle-free vaccine delivery. Adv. Drug Deliv. Rev. 58, 68–89 (2006).

    CAS  Google Scholar 

  9. Bins, A. D. et al. A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression. Nature Med. 11, 899–904 (2005).

    CAS  Google Scholar 

  10. Johansen, P. et al. Antigen kinetics determines immune reactivity. Proc. Natl Acad. Sci. USA 105, 5189–5194 (2008).

    CAS  Google Scholar 

  11. Jewell, C. M., Bustamante, L. S. C. & Irvine, D. J. In situ engineering of the lymph node microenvironment via intranodal injection of adjuvant-releasing polymer particles. Proc. Natl Acad. Sci. USA 108, 15745–15750 (2011).

    CAS  Google Scholar 

  12. Prlic, M., Hernandez-Hoyos, G. & Bevan, M. J. Duration of the initial TCR stimulus controls the magnitude but not functionality of the CD8+ T cell response. J. Exp. Med. 203, 2135–2143 (2006).

    CAS  Google Scholar 

  13. Decher, G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    CAS  Google Scholar 

  14. Hammond, P. T. Engineering materials layer-by-layer: Challenges and opportunities in multilayer assembly. AIChE J. 57, 2928–2940 (2011).

    CAS  Google Scholar 

  15. Macdonald, M., Rodriguez, N. M., Smith, R. & Hammond, P. T. Release of a model protein from biodegradable self assembled films for surface delivery applications. J. Controlled Release 131, 228–234 (2008).

    CAS  Google Scholar 

  16. MacDonald, M. L. et al. Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials 32, 1446–1453 (2011).

    CAS  Google Scholar 

  17. Shah, N. J. et al. Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials 32, 6183–6193 (2011).

    CAS  Google Scholar 

  18. Doh, J. & Irvine, D. J. Photogenerated polyelectrolyte bilayers from an aqueous-processible photoresist for multicomponent protein patterning. J. Am. Chem. Soc. 126, 9170–9171 (2004).

    CAS  Google Scholar 

  19. DeMuth, P. C., Su, X., Samuel, R. E., Hammond, P. T. & Irvine, D. J. Nano-layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Adv. Mater. 22, 4851–4856 (2010).

    CAS  Google Scholar 

  20. Krogman, K. C., Lowery, J. L., Zacharia, N. S., Rutledge, G. C. & Hammond, P. T. Spraying asymmetry into functional membranes layer-by-layer. Nature Mater. 8, 512–518 (2009).

    CAS  Google Scholar 

  21. Jewell, C. M., Zhang, J., Fredin, N. J. & Lynn, D. M. Multilayered polyelectrolyte films promote the direct and localized delivery of DNA to cells. J. Controlled Release 106, 214–223 (2005).

    CAS  Google Scholar 

  22. Katz, J. S., Doh, J. & Irvine, D. J. Composition-tunable properties of amphiphilic comb copolymers containing protected methacrylic acid groups for multicomponent protein patterning. Langmuir 22, 353–359 (2006).

    CAS  Google Scholar 

  23. Little, S. R. et al. Poly- β amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc. Natl Acad. Sci. USA 101, 9534–9539 (2004).

    CAS  Google Scholar 

  24. Lynn, D. M. & Langer, R. Degradable poly(β-amino esters): Synthesis, characterization, and self-assembly with plasmid DNA. J. Am. Chem. Soc. 122, 10761–10768 (2000).

    CAS  Google Scholar 

  25. Su, X., Kim, B-S., Kim Sara, R., Hammond Paula, T. & Irvine Darrell, J. Layer-by-layer-assembled multilayer films for transcutaneous drug and vaccine delivery. ACS Nano 3, 3719–3729 (2009).

    CAS  Google Scholar 

  26. Boes, M. et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 418, 983–988 (2002).

    CAS  Google Scholar 

  27. Jewell, C. M. et al. Release of plasmid DNA from intravascular stents coated with ultrathin multilayered polyelectrolyte films. Biomacromolecules 7, 2483–2491 (2006).

    CAS  Google Scholar 

  28. Zhang, J., Fredin, N. J., Janz, J. F., Sun, B. & Lynn, D. M. Structure/property relationships in erodible multilayered films: Influence of polycation structure on erosion profiles and the release of anionic polyelectrolytes. Langmuir 22, 239–245 (2006).

    Google Scholar 

  29. Gross, S. et al. Bioluminescence imaging of myeloperoxidase activity in vivo. Nature Med. 15, 455–461 (2009).

    CAS  Google Scholar 

  30. Soria-Castro, I. et al. Cot/tpl2 (MAP3K8) mediates myeloperoxidase activity and hypernociception following peripheral inflammation. J. Biol. Chem. 285, 33805–33815 (2010).

    CAS  Google Scholar 

  31. Bechler, S. L. & Lynn, D. M. Characterization of degradable polyelectrolyte multilayers fabricated using DNA and a fluorescently-labeled poly(β-amino ester): Shedding light on the role of the cationic polymer in promoting surface-mediated gene delivery. Biomacromolecules 13, 542–552 (2012).

    CAS  Google Scholar 

  32. Elnekave, M., Furmanov, K. & Hovav, A-H. Intradermal naked plasmid DNA immunization: Mechanisms of action. Expert Rev. Vaccines 10, 1169–1182 (2011).

    CAS  Google Scholar 

  33. Van Drunen Littel-van den Hurk, S. & Hannaman, D. Electroporation for DNA immunization: Clinical application. Expert Rev. Vaccines 9, 503–517 (2010).

    CAS  Google Scholar 

  34. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: Function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    CAS  Google Scholar 

  35. Greenland, J. R. et al. β-amino ester polymers facilitate in vivo DNA transfection and adjuvant plasmid DNA immunization. Mol. Ther. 12, 164–170 (2005).

    CAS  Google Scholar 

  36. Saade, F. & Petrovsky, N. Technologies for enhanced efficacy of DNA vaccines. Expert Rev. Vaccines 11, 189–209 (2012).

    CAS  Google Scholar 

  37. Sullivan, S. P. et al. Dissolving polymer microneedle patches for influenza vaccination. Nature Med. 16, 915–920 (2009).

    Google Scholar 

  38. Zhu, Q. et al. Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc. Natl Acad. Sci. USA 106, 7968–7973 (2009).

    CAS  Google Scholar 

  39. Chen, X. et al. Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. J. Controlled Release 148, 327–333 (2010).

    CAS  Google Scholar 

  40. Gill, H. S., Soederholm, J., Prausnitz, M. R. & Saellberg, M. Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Gene Ther. 17, 811–814 (2010).

    CAS  Google Scholar 

  41. Mikszta, J. A. et al. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nature Med. 8, 415–419 (2002).

    CAS  Google Scholar 

  42. Song, J-M. et al. DNA vaccination in the skin using microneedles improves protection against influenza. Mol. Ther. 20, 1472–1480 (2012).

    CAS  Google Scholar 

  43. Verstrepen, B. E. et al. Improved HIV-1 specific T-cell responses by short-interval DNA tattooing as compared to intramuscular immunization in non-human primates. Vaccine 26, 3346–3351 (2008).

    CAS  Google Scholar 

  44. Denet, A-R., Vanbever, R. & Preat, V. Skin electroporation for transdermal and topical delivery. Adv. Drug Deliv. Rev. 56, 659–674 (2004).

    CAS  Google Scholar 

  45. Wallace, M. et al. Tolerability of two sequential electroporation treatments using MedPulser DNA Delivery System (DDS) in healthy adults. Mol. Ther. 17, 922–928 (2009).

    CAS  Google Scholar 

  46. Boudou, T., Crouzier, T., Ren, K., Blin, G. & Picart, C. Multiple functionalities of polyelectrolyte multilayer films: New biomedical applications. Adv. Mater. 22, 441–467 (2010).

    CAS  Google Scholar 

  47. Dimitrova, M. et al. Sustained delivery of siRNAs targeting viral infection by cell-degradable multilayered polyelectrolyte films. Proc. Natl Acad. Sci. USA 105, 16320–16325 (2008).

    CAS  Google Scholar 

  48. Jessel, N. et al. Multiple and time-scheduled in situ DNA delivery mediated by -cyclodextrin embedded in a polyelectrolyte multilayer. Proc. Natl Acad. Sci. USA 103, 8618–8621 (2006).

    CAS  Google Scholar 

  49. Kim, B-S., Park, S. W. & Hammond, P. T. Hydrogen-bonding layer-by-layer-assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces. ACS Nano 2, 386–392 (2008).

    CAS  Google Scholar 

  50. Kim, B-S., Smith, R. C., Poon, Z. & Hammond, P. T. MAD (multiagent delivery) nanolayer: Delivering multiple therapeutics from hierarchically assembled surface coatings. Langmuir 25, 14086–14092 (2009).

    CAS  Google Scholar 

  51. Lynn, D. M. Peeling back the layers: Controlled erosion and triggered disassembly of multilayered polyelectrolyte thin films. Adv. Mater. 19, 4118–4130 (2007).

    CAS  Google Scholar 

  52. Akinc, A., Anderson, D. G., Lynn, D. M. & Langer, R. Synthesis of poly(β-amino ester)s optimized for highly effective gene delivery. Bioconjug. Chem. 14, 979–988 (2003).

    CAS  Google Scholar 

  53. Stoitzner, P. et al. Migration of Langerhans cells and dermal dendritic cells in skin organ cultures: Augmentation by TNF- α and IL- 1β. J. Leukoc. Biol. 66, 462–470 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ragon Institute of MGH, MIT, and Harvard, the NIH (AI095109), and the Institute for Soldier Nanotechnology (Dept. of Defense contracts W911NF-07-D-0004 and W911NF-07-0004, T.O. 8). We thank R. Parkhill and M. Nguyen (VaxDesign) for assistance with microneedle array fabrication. D.J.I. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

P.C.D., P.T.H. and D.J.I. designed the experiments. P.C.D., D.H.B. and D.J.I. designed macaque skin studies. P.C.D. carried out the experiments; Y.M. performed in vitro nucleic acid release studies. B.H. synthesized the PNMP polymers. A.D.M. and J.A.K. collected the macaque skin. P.C.D., P.T.H. and D.J.I. analysed the data and wrote the paper.

Corresponding authors

Correspondence to Paula T. Hammond or Darrell J. Irvine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1176 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeMuth, P., Min, Y., Huang, B. et al. Polymer multilayer tattooing for enhanced DNA vaccination. Nature Mater 12, 367–376 (2013). https://doi.org/10.1038/nmat3550

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nmat3550

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research