Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Advertising Feature: Application Note
  • Published:

ProbeLibrary: A new method for faster design and execution of quantitative real-time PCR

Abstract

ProbeLibrary, a fast, specific and flexible format for quantitative real-time PCR, is described. The ProbeLibrary concept is based on the fact that just 90 short probes provide transcriptome-wide coverage in most organisms. These short probes are highly specific and possess the high melting temperature (Tm) required for real-time PCR owing to the incorporation of locked nucleic acid (LNA). The probes are dual-labeled fluorogenic probes that are used in standard real-time PCR protocols, with standard instrumentation. ProbeLibrary probes are used in assays designed using free, web-based assay design software, termed ProbeFinder. In seconds, ProbeFinder designs highly specific intron-spanning assays for a target transcript. The system allows multiple design options, including designs for transcript variants and gene family members. Assay design success rate is 96%. This combination of extremely fast assay design and instant availability of the probes leads to faster implementation of real-time PCR assays.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Validation and performance of ProbeLibrary assays.

References

  1. Koshkin, A.A. et al. LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil biocyclonucleoside monomers, oligomerisation and unprecedented nucleic acid recognition. Tetrahedron 54, 3607–3630 (1998).

    Article  CAS  Google Scholar 

  2. Ramakers, C., Ruijter, J.M., Deprez, R.H. & Moorman, A.F. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62–66 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Technical assistance from S. Ludvigsen, M.B. Mogensen and M. Bjørn is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mouritzen.

Additional information

Disclaimer

This article was submitted to Nature Methods by a commercial organization and has not been peer reviewed. Nature Methods takes no responsibility for the accuracy or otherwise of the information provided.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouritzen, P., Noerholm, M., Nielsen, P. et al. ProbeLibrary: A new method for faster design and execution of quantitative real-time PCR. Nat Methods 2, 313–316 (2005). https://doi.org/10.1038/nmeth0405-313

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nmeth0405-313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing