Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A second-site suppressor strategy for chemical genetic analysis of diverse protein kinases

Abstract

Chemical genetic analysis of protein kinases involves engineering kinases to be uniquely sensitive to inhibitors and ATP analogs that are not recognized by wild-type kinases. Despite the successful application of this approach to over two dozen kinases, several kinases do not tolerate the necessary modification to the ATP binding pocket, as they lose catalytic activity or cellular function upon mutation of the 'gatekeeper' residue that governs inhibitor and nucleotide substrate specificity. Here we describe the identification of second-site suppressor mutations to rescue the activity of 'intolerant' kinases. A bacterial genetic selection for second-site suppressors using an aminoglycoside kinase APH(3′)-IIIa revealed several suppressor hotspots in the kinase domain. Informed by results from this selection, we focused on the β sheet in the N-terminal subdomain and generated a structure-based sequence alignment of protein kinases in this region. From this alignment, we identified second-site suppressors for several divergent kinases including Cdc5, MEKK1, GRK2 and Pto. The ability to identify second-site suppressors to rescue the activity of intolerant kinases should facilitate chemical genetic analysis of the majority of protein kinases in the genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Natural variation of the gatekeeper residue and its tolerability of substitution with glycine.
Figure 2: Protein kinase–like structure of APH(3′)-IIIa, and its intolerance of gatekeeper mutation to glycine.
Figure 3: Suppressor mutations selected from a random mutant library of APH(3′)-IIIaM90G.
Figure 4: A structure-based sequence alignment of kinases within the β sheet in the N-terminal lobe.
Figure 5: Effects of the designed suppressor mutations on four intolerant protein kinases.

Similar content being viewed by others

References

  1. Davies, S.P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105 (2000).

    Article  CAS  Google Scholar 

  2. Fabian, M.A. et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23, 329–336 (2005).

    Article  CAS  Google Scholar 

  3. Bishop, A.C. et al. Generation of monospecific nanomolar tyrosine kinase inhibitors via a chemical genetic approach. J. Am. Chem. Soc. 121, 627–631 (1999).

    Article  CAS  Google Scholar 

  4. Bishop, A.C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  CAS  Google Scholar 

  5. Adams, J., Huang, P. & Patrick, D. A strategy for the design of multiplex inhibitors for kinase-mediated signalling in angiogenesis. Curr. Opin. Chem. Biol. 6, 486–492 (2002).

    Article  CAS  Google Scholar 

  6. Ubersax, J.A. et al. Targets of the cyclin-dependent kinase Cdk1. Nature 425, 859–864 (2003).

    Article  CAS  Google Scholar 

  7. Sekiya-Kawasaki, M. et al. Dynamic phosphoregulation of the cortical actin cytoskeleton and endocytic machinery revealed by real-time chemical genetic analysis. J. Cell Biol. 162, 765–772 (2003).

    Article  CAS  Google Scholar 

  8. Wang, H. et al. Inducible protein knockout reveals temporal requirement of CaMKII reactivation for memory consolidation in the brain. Proc. Natl. Acad. Sci. USA 100, 4287–4292 (2003).

    Article  CAS  Google Scholar 

  9. Weiss, E.L., Bishop, A.C., Shokat, K.M. & Drubin, D.G. Chemical genetic analysis of the budding-yeast p21-activated kinase Cla4p. Nat. Cell Biol. 2, 677–685 (2000).

    Article  CAS  Google Scholar 

  10. Weiss, E.L. et al. The Saccharomyces cerevisiae Mob2p-Cbk1p kinase complex promotes polarized growth and acts with the mitotic exit network to facilitate daughter cell–specific localization of Ace2p transcription factor. J. Cell Biol. 158, 885–900 (2002).

    Article  CAS  Google Scholar 

  11. Carroll, A.S., Bishop, A.C., DeRisi, J.L., Shokat, K.M. & O'Shea, E.K. Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response. Proc. Natl. Acad. Sci. USA 98, 12578–12583 (2001).

    Article  CAS  Google Scholar 

  12. Benjamin, K.R., Zhang, C., Shokat, K.M. & Herskowitz, I. Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2. Genes Dev. 17, 1524–1539 (2003).

    Article  CAS  Google Scholar 

  13. Sreenivasan, A., Bishop, A.C., Shokat, K.M. & Kellogg, D.R. Specific inhibition of Elm1 kinase activity reveals functions required for early G1 events. Mol. Cell. Biol. 23, 6327–6337 (2003).

    Article  CAS  Google Scholar 

  14. Wan, L., de los Santos, T., Zhang, C., Shokat, K. & Hollingsworth, N.M. Mek1 kinase activity functions downstream of RED1 in the regulation of meiotic double strand break repair in budding yeast. Mol. Biol. Cell 15, 11–23 (2004).

    Article  CAS  Google Scholar 

  15. Liu, Y. et al. Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. Mol. Cell. Biol. 24, 1721–1735 (2004).

    Article  CAS  Google Scholar 

  16. Niswender, C.M. et al. Protein engineering of protein kinase A catalytic subunits results in the acquisition of novel inhibitor sensitivity. J. Biol. Chem. 277, 28916–28922 (2002).

    Article  CAS  Google Scholar 

  17. Fan, Q.W., Zhang, C., Shokat, K.M. & Weiss, W.A. Chemical genetic blockade of transformation reveals dependence on aberrant oncogenic signaling. Curr. Biol. 12, 1386–1394 (2002).

    Article  CAS  Google Scholar 

  18. Denzel, A. et al. Cutting edge: a chemical genetic system for the analysis of kinases regulating T cell development. J. Immunol. 171, 519–523 (2003).

    Article  CAS  Google Scholar 

  19. Habelhah, H. et al. Identification of new JNK substrate using ATP pocket mutant JNK and a corresponding ATP analogue. J. Biol. Chem. 276, 18090–18095 (2001).

    Article  CAS  Google Scholar 

  20. Eblen, S.T. et al. Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs. J. Biol. Chem. 278, 14926–14935 (2003).

    Article  CAS  Google Scholar 

  21. Wright, G.D. & Thompson, P.R. Aminoglycoside phosphotransferases: proteins, structure, and mechanism. Front. Biosci. 4, D9–21 (1999).

    CAS  PubMed  Google Scholar 

  22. McKay, G.A., Thompson, P.R. & Wright, G.D. Broad spectrum aminoglycoside phosphotransferase type III from Enterococcus: overexpression, purification, and substrate specificity. Biochemistry 33, 6936–6944 (1994).

    Article  CAS  Google Scholar 

  23. Hon, W.C. et al. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell 89, 887–895 (1997).

    Article  CAS  Google Scholar 

  24. Fong, D.H. & Berghuis, A.M. Substrate promiscuity of an aminoglycoside antibiotic resistance enzyme via target mimicry. EMBO J. 21, 2323–2331 (2002).

    Article  CAS  Google Scholar 

  25. Grimsley, G.R. et al. Increasing protein stability by altering long-range coulombic interactions. Protein Sci. 8, 1843–1849 (1999).

    Article  CAS  Google Scholar 

  26. Otzen, D.E. & Fersht, A.R. Side-chain determinants of β-sheet stability. Biochemistry 34, 5718–5724 (1995).

    Article  CAS  Google Scholar 

  27. Minor, D.L., Jr. & Kim, P.S. Measurement of the β sheet–forming propensities of amino acids. Nature 367, 660–663 (1994).

    Article  CAS  Google Scholar 

  28. Lee, K.S., Park, J.E., Asano, S. & Park, C.J. Yeast polo-like kinases: functionally conserved multitask mitotic regulators. Oncogene 24, 217–229 (2005).

    Article  CAS  Google Scholar 

  29. Schlesinger, T.K., Fanger, G.R., Yujiri, T. & Johnson, G.L. The TAO of MEKK. Front. Biosci. 3, D1181–D1186 (1998).

    Article  CAS  Google Scholar 

  30. Nemoto, S., DiDonato, J.A. & Lin, A. Coordinate regulation of IκB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-κB–inducing kinase. Mol. Cell. Biol. 18, 7336–7343 (1998).

    Article  CAS  Google Scholar 

  31. Xia, Y. et al. MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor–induced cell migration. Proc. Natl. Acad. Sci. USA 97, 5243–5248 (2000).

    Article  CAS  Google Scholar 

  32. Zhang, J. et al. Molecular mechanisms of G protein–coupled receptor signaling: role of G protein–coupled receptor kinases and arrestins in receptor desensitization and resensitization. Receptors Channels 5, 193–199 (1997).

    CAS  PubMed  Google Scholar 

  33. Goodman, O.B., Jr. et al. β-arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor. Nature 383, 447–450 (1996).

    Article  CAS  Google Scholar 

  34. Ferguson, S.S. et al. Role of beta-arrestin in mediating agonist-promoted G protein–coupled receptor internalization. Science 271, 363–366 (1996).

    Article  CAS  Google Scholar 

  35. Keith, D.E. et al. Morphine activates opioid receptors without causing their rapid internalization. J. Biol. Chem. 271, 19021–19024 (1996).

    Article  CAS  Google Scholar 

  36. Zhang, J. et al. Role for G protein–coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness. Proc. Natl. Acad. Sci. USA 95, 7157–7162 (1998).

    Article  CAS  Google Scholar 

  37. Pedley, K.F. & Martin, G.B. Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annu. Rev. Phytopathol. 41, 215–243 (2003).

    Article  CAS  Google Scholar 

  38. Lodowski, D.T., Pitcher, J.A., Capel, W.D., Lefkowitz, R.J. & Tesmer, J.J. Keeping G proteins at bay: a complex between G protein–coupled receptor kinase 2 and Gβγ. Science 300, 1256–1262 (2003).

    Article  CAS  Google Scholar 

  39. Miyazaki, C. et al. Changes in the specificity of antibodies by site-specific mutagenesis followed by random mutagenesis. Protein Eng. 12, 407–415 (1999).

    Article  CAS  Google Scholar 

  40. Jaspersen, S.L., Charles, J.F., Tinker-Kulberg, R.L. & Morgan, D.O. A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol. Biol. Cell 9, 2803–2817 (1998).

    Article  CAS  Google Scholar 

  41. Cross, J.V. & Templeton, D.J. Oxidative stress inhibits MEKK1 by site-specific glutathionylation in the ATP-binding domain. Biochem. J. 381, 675–683 (2004).

    Article  CAS  Google Scholar 

  42. Fuerst, T.R., Niles, E.G., Studier, F.W. & Moss, B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 83, 8122–8126 (1986).

    Article  CAS  Google Scholar 

  43. Tsao, P.I. & von Zastrow, M. Type-specific sorting of G protein–coupled receptors after endocytosis. J. Biol. Chem. 275, 11130–11140 (2000).

    Article  CAS  Google Scholar 

  44. Gage, R.M., Kim, K.A., Cao, T.T. & von Zastrow, M. A transplantable sorting signal that is sufficient to mediate rapid recycling of G protein–coupled receptors. J. Biol. Chem. 276, 44712–44720 (2001).

    Article  CAS  Google Scholar 

  45. Sessa, G., D'Ascenzo, M., Loh, Y.T. & Martin, G.B. Biochemical properties of two protein kinases involved in disease resistance signaling in tomato. J. Biol. Chem. 273, 15860–15865 (1998).

    Article  CAS  Google Scholar 

  46. Zhou, J., Loh, Y.T., Bressan, R.A. & Martin, G.B. The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83, 925–935 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G.D. Wright for providing the APH(3′)-IIIa expression plasmid. We also thank M. Simon, Z. Knight and S. DiMagno for critical reading of the manuscript. This work was supported by the National Institutes of Health (R01EB001987 & AI44009 to K.M.S.) and Binational Science Foundation (Grant 2001124 to G.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevan M Shokat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Viability of yeast strains carrying different Cdc5 alleles based on colony-forming efficiency. (PDF 248 kb)

Supplementary Fig. 2

Enzymatic activity of Pto proteins revealed in an in vitro autophosphorylation kinase assay. (PDF 127 kb)

Supplementary Fig. 3

Catalytic activity of MEKK1 proteins using N6-phenethyl-ATP revealed in an in vitro kinase assay. (PDF 423 kb)

Supplementary Table 1

Mutagenic primers used in the paper. (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Kenski, D., Paulson, J. et al. A second-site suppressor strategy for chemical genetic analysis of diverse protein kinases. Nat Methods 2, 435–441 (2005). https://doi.org/10.1038/nmeth764

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nmeth764

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing