Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shigella flexneri suppresses NF-κB activation by inhibiting linear ubiquitin chain ligation

Abstract

The linear ubiquitin chain assembly complex (LUBAC) is a multimeric E3 ligase that catalyses M1 or linear ubiquitination of activated immune receptor signalling complexes (RSCs). Mutations that disrupt linear ubiquitin assembly lead to complex disease pathologies including immunodeficiency and autoinflammation in both humans and mice, but microbial toxins that target LUBAC function have not yet been discovered. Here, we report the identification of two homologous Shigella flexneri type III secretion system effector E3 ligases IpaH1.4 and IpaH2.5, which directly interact with LUBAC subunit Heme-oxidized IRP2 ubiquitin ligase-1 (HOIL-1L) and conjugate K48-linked ubiquitin chains to the catalytic RING-between-RING domain of HOIL-1-interacting protein (HOIP). Proteasomal degradation of HOIP leads to irreversible inactivation of linear ubiquitination and blunting of NF-κB nuclear translocation in response to tumour-necrosis factor (TNF), IL-1β and pathogen-associated molecular patterns. Loss of function studies in mammallian cells in combination with bacterial genetics explains how Shigella evades a broad spectrum of immune surveillance systems by cooperative inhibition of receptor ubiquitination and reveals the critical importance of LUBAC in host defence against pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screening S. flexneri T3SS effector proteins for disrupting the TNF-R signalling pathway.
Figure 2: IpaH1.4/2.5 mediates proteasomal degradation of HOIP.
Figure 3: IpaH1.4/2.5 post-translationally modifies Lys residues 735, 783 and 875 in HOIP.
Figure 4: IpaH1.4 is the major E3 ligase regulator of cytokine RSCs.
Figure 5: Innate immune pathways are disrupted by IpaH1.4 during infection.
Figure 6: IpaH1.4 and OspI cooperate to limit IL-1R signalling during Shigella infection.

Similar content being viewed by others

References

  1. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    Article  Google Scholar 

  2. Haas, T. L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831–844 (2009).

    Article  Google Scholar 

  3. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011).

    Article  Google Scholar 

  4. Walczak, H., Iwai, K. & Dikic, I. Generation and physiological roles of linear ubiquitin chains. BMC Biology 10, 23 (2012).

    Article  Google Scholar 

  5. Rieser, E., Cordier, S. M. & Walczak, H. Linear ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem. Sci. 38, 94–102 (2013).

    Article  Google Scholar 

  6. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

    Article  Google Scholar 

  7. Tokunaga, F. et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nature Cell Biol. 11, 123–132 (2009).

    Article  Google Scholar 

  8. Boisson, B. et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J. Exp. Med. 212, 939–951 (2015).

    Article  Google Scholar 

  9. Boisson, B. et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nature Immunol. 13, 1178–1186 (2012).

    Article  Google Scholar 

  10. Reddick, L. E. & Alto, N. M. Bacteria fighting back: how pathogens target and subvert the host innate immune system. Mol. Cell 54, 321–328 (2014).

    Article  Google Scholar 

  11. Kotloff, K. L. et al. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. World Health Organ. 77, 651–666 (1999).

    Google Scholar 

  12. Lan, R., Alles, M. C., Donohoe, K., Martinez, M. B. & Reeves, P. R. Molecular evolutionary relationships of enteroinvasive Escherichia coli and Shigella spp. Infect. Immun. 72, 5080–5088 (2004).

    Article  Google Scholar 

  13. Ashida, H. et al. A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKγ to dampen the host NF-κB-mediated inflammatory response. Nature Cell Biol. 12, 66–73 (2010).

    Article  Google Scholar 

  14. Buchrieser, C. et al. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol. Microbiol. 38, 760–771 (2000).

    Article  Google Scholar 

  15. Ashida, H., Nakano, H. & Sasakawa, C. Shigella IpaH0722 E3 ubiquitin ligase effector targets TRAF2 to inhibit PKC-NF-κB activity in invaded epithelial cells. PLoS Pathogens 9, e1003409 (2013).

    Article  Google Scholar 

  16. Kim, D. W. et al. The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc. Natl Acad. Sci. USA 102, 14046–14051 (2005).

    Article  Google Scholar 

  17. Sanada, T. et al. The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature 483, 623–626 (2012).

    Article  Google Scholar 

  18. Newton, H. J. et al. The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-κB p65. PLoS Pathogens 6, e1000898 (2010).

    Article  Google Scholar 

  19. Zhang, L. et al. Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation. Nature 481, 204–208 (2012).

    Article  Google Scholar 

  20. Emmerich, C. H. et al. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc. Natl Acad. Sci. USA 110, 15247–15252 (2013).

    Article  Google Scholar 

  21. Rohde, J. R., Breitkreutz, A., Chenal, A., Sansonetti, P. J. & Parsot, C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1, 77–83 (2007).

    Article  Google Scholar 

  22. Zhu, Y. et al. Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nature Struct. Mol. Biol. 15, 1302–1308 (2008).

    Article  Google Scholar 

  23. Pruneda, J. N. et al. E2Ub conjugates regulate the kinase activity of Shigella effector OspG during pathogenesis. EMBO J. 33, 437–449 (2014).

    Google Scholar 

  24. Zhou, Y., Dong, N., Hu, L. & Shao, F. The Shigella type three secretion system effector OspG directly and specifically binds to host ubiquitin for activation. PLoS ONE 8, e57558 (2013).

    Article  Google Scholar 

  25. Uekusa, Y. et al. Backbone and side chain 1H, 13C, and 15N assignments of the ubiquitin-like domain of human HOIL-1L, an essential component of linear ubiquitin chain assembly complex. Biomol. NMR Assign. 6, 177–180 (2012).

    Article  Google Scholar 

  26. Yagi, H. et al. A non-canonical UBA–UBL interaction forms the linear-ubiquitin-chain assembly complex. EMBO Rep. 13, 462–468 (2012).

    Article  Google Scholar 

  27. Smit, J. J. et al. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING–IBR–RING domain and the unique LDD extension. EMBO J. 31, 3833–3844 (2012).

    Article  Google Scholar 

  28. Keszei, A. F. et al. Structure of an SspH1–PKN1 complex reveals the basis for host substrate recognition and mechanism of activation for a bacterial E3 ubiquitin ligase. Mol. Cell. Biol. 34, 362–373 (2014).

    Article  Google Scholar 

  29. Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576–1583 (1989).

    Article  Google Scholar 

  30. Ashida, H., Toyotome, T., Nagai, T. & Sasakawa, C. Shigella chromosomal IpaH proteins are secreted via the type III secretion system and act as effectors. Mol. Microbiol. 63, 680–693 (2007).

    Article  Google Scholar 

  31. Wang, F. et al. Shigella flexneri T3SS effector IpaH4.5 modulates the host inflammatory response via interaction with NF-κB p65 protein. Cell. Microbiol. 15, 474–485 (2013).

    Article  Google Scholar 

  32. Haraga, A. & Miller, S. I. A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell. Microbiol. 8, 837–846 (2006).

    Article  Google Scholar 

  33. Damgaard, R. B. et al. The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol. Cell 46, 746–758 (2012).

    Article  Google Scholar 

  34. Gurung, P., Lamkanfi, M. & Kanneganti, T. D. Cutting edge: SHARPIN is required for optimal NLRP3 inflammasome activation. J. Immunol. 194, 2064–2067 (2015).

    Article  Google Scholar 

  35. Rodgers, M. A. et al. The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J. Exp. Med. 211, 1333–1347 (2014).

    Article  Google Scholar 

  36. Tokunaga, F. et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011).

    Article  Google Scholar 

  37. Raqib, R., Wretlind, B., Andersson, J. & Lindberg, A. A. Cytokine secretion in acute shigellosis is correlated to disease activity and directed more to stool than to plasma. J. Infect. Dis. 171, 376–384 (1995).

    Article  Google Scholar 

  38. Speelman, P., Kabir, I. & Islam, M. Distribution and spread of colonic lesions in shigellosis: a colonoscopic study. J. Infect. Dis. 150, 899–903 (1984).

    Article  Google Scholar 

  39. Islam, D. et al. Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nature Med. 7, 180–185 (2001).

    Article  Google Scholar 

  40. Sperandio, B. et al. Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression. J. Exp. Med. 205, 1121–1132 (2008).

    Article  Google Scholar 

  41. Fields, S. & Song, O. A novel genetic system to detect protein–protein interactions. Nature 340, 245–246 (1989).

    Article  Google Scholar 

  42. Hollenberg, S. M., Sternglanz, R., Cheng, P. F. & Weintraub, H. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol. 15, 3813–3822 (1995).

    Article  Google Scholar 

  43. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article  Google Scholar 

  44. Lauer, P., Chow, M. Y., Loessner, M. J., Portnoy, D. A. & Calendar, R. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol. 184, 4177–4186 (2002).

    Article  Google Scholar 

  45. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nature Methods 11, 783–784 (2014).

    Article  Google Scholar 

  46. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank K. Iwai (Kyoto University) and T. Sixma (The Netherlands Cancer Institute) for providing plasmids, R. Potts (UTSW) for reagents and advice, and the Alto laboratory for discussions. The authors acknowledge the services of the University of Texas Southwestern Medical Center proteomics core. This work was supported by grants from the National Institutes of Health (AI083359 and GM100486), the Welch Foundation (#I-1704) and the Burroughs Wellcome Fund to N.M.A.

Author information

Authors and Affiliations

Authors

Contributions

M.F.d.J. and N.M.A. were responsible for study design, the analysis and interpretation of data and for writing the manuscript. M.F.d.J. performed and analysed the experiments. Z.L. and D.C. developed essential assays systems.

Corresponding author

Correspondence to Neal M. Alto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–16. (PDF 2774 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jong, M., Liu, Z., Chen, D. et al. Shigella flexneri suppresses NF-κB activation by inhibiting linear ubiquitin chain ligation. Nat Microbiol 1, 16084 (2016). https://doi.org/10.1038/nmicrobiol.2016.84

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.84

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology