Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

What constitutes an efficient reference frame for vision?

Abstract

Vision requires a reference frame. To what extent does this reference frame depend on the structure of the visual input, rather than just on retinal landmarks? This question is particularly relevant to the perception of dynamic scenes, when keeping track of external motion relative to the retina is difficult. We tested human subjects' ability to discriminate the motion and temporal coherence of changing elements that were embedded in global patterns and whose perceptual organization was manipulated in a way that caused only minor changes to the retinal image. Coherence discriminations were always better when local elements were perceived to be organized as a global moving form than when they were perceived to be unorganized, individually moving entities. Our results indicate that perceived form influences the neural representation of its component features, and from this, we propose a new method for studying perceptual organization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Point-light walker animations.
Figure 2: Translating pentagon animations.
Figure 3: Results from PLW experiments.
Figure 4: Results from the motion detection task.
Figure 5: Results from MP experiments.

Similar content being viewed by others

References

  1. Boussaoud, D. & Bremmer, F. Gaze effects in the cerebral cortex: reference frames for space coding and action. Exp. Brain Res. 128, 170–180 (1999).

    Article  CAS  Google Scholar 

  2. Buneo, C.A., Jarvis, M.R., Batista, A.P. & Andersen, R.A. Direct visuomotor transformations for reaching. Nature 416, 632–636 (2002).

    Article  CAS  Google Scholar 

  3. Soechting, J.F. & Flanders, M. Moving in three-dimensional space: frames of reference, vectors, and coordinate systems. Annu. Rev. Neurosci. 15, 167–191 (1992).

    Article  CAS  Google Scholar 

  4. Felleman, D.J. & Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  Google Scholar 

  5. Bradley, D.C., Maxwell, M., Andersen, R.A., Banks, M.S. & Shenoy, K.V. Mechanisms of heading perception in primate visual cortex. Science 273, 1544–1547 (1996).

    Article  CAS  Google Scholar 

  6. Crowell, J.A., Banks, M.S., Shenoy, K.V. & Andersen, R.A. Visual self-motion perception during head turns. Nat. Neurosci. 1, 732–737 (1998).

    Article  CAS  Google Scholar 

  7. Haarmeier, T., Thier, P., Repnow, M. & Petersen, D. False perception of motion in a patient who cannot compensate for eye movements. Nature 389, 849–852 (1997).

    Article  CAS  Google Scholar 

  8. Haarmeier, T., Bunjes, F., Lindner, A., Berret, E. & Thier, P. Optimizing visual motion perception during eye movements. Neuron 32, 527–535 (2001).

    Article  CAS  Google Scholar 

  9. Turano, K.A. & Heidenreich, S.M. Eye movements affect the perceived speed of visual motion. Vision Res. 39, 1177–1187 (1999).

    Article  CAS  Google Scholar 

  10. Gibson, J.J. The Perception of the Visual World (Houghton Mifflin, Boston, 1950).

    Google Scholar 

  11. Johansson, G. in Perceiving Events and Objects (eds. Jaansson, G., Bergstrom, S. S. & Epstein, W.) 29–122 (Lawrence Erlbaum, Hillsdale, New Jersey, 1994).

    Google Scholar 

  12. Wade, N.J. & Swanston, M.T. A general model for the perception of space and motion. Perception 25, 187–194 (1996).

    Article  CAS  Google Scholar 

  13. Johansson, G. Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14, 201–211 (1973).

    Article  Google Scholar 

  14. Lorenceau, J. & Shiffrar, M. The influence of terminators on motion integration across space. Vision Res. 32, 263–273 (1992).

    Article  CAS  Google Scholar 

  15. Fox, R. & McDaniel, C. The perception of biological motion by human infants. Science 218, 486–487 (1982).

    Article  CAS  Google Scholar 

  16. Pavlova, M. & Sokolov, A. Orientation specificity in biological motion perception. Percept. Psychophys. 62, 889–899 (2000).

    Article  CAS  Google Scholar 

  17. Marr, D. & Ullman, S. Directional selectivity and its use in early visual processing. Proc. R. Soc. Lond. B Biol. Sci. 211, 150–180 (1981).

    Google Scholar 

  18. Morgan, M.J., Findlay, J.M. & Watt, R.J. Aperture viewing: a review and a synthesis. Q. J. Exp. Psychol. 34A, 211–233 (1982).

    Article  Google Scholar 

  19. Cavanagh, P., Labianca, A.T. & Thornton, I.M. Attention-based visual routines: sprites. Cognition 80, 47–60 (2001).

    Article  CAS  Google Scholar 

  20. Vaina, L.M., Solomon, J., Chowdhury, S., Sinha, P. & Belliveau, J.W. Functional neuroanatomy of biological motion perception in humans. Proc. Natl. Acad. Sci. USA 98, 11656–11661 (2001).

    Article  CAS  Google Scholar 

  21. Craik, F.I.M. & Tulving, E. Depth of processing and the retention of words in episodic memory. J. Exp. Psychol. Gen. 104, 268–294 (1975).

    Article  Google Scholar 

  22. Day, R.H. & Strelow, E. Reduction or disappearance of visual after effect of movement in the absence of patterned surround. Nature 230, 55–56 (1971).

    Article  CAS  Google Scholar 

  23. Lappin, J.S. & Craft, W.D. Foundations of spatial vision: from retinal images to perceived shapes. Psychol. Rev. 107, 6–38 (2000).

    Article  CAS  Google Scholar 

  24. Lappin, J.S., Donnelly, M.P. & Kojima, H. Coherence of early motion signals. Vision Res. 41, 1631–1644 (2001).

    Article  CAS  Google Scholar 

  25. Legge, G.E. & Campbell, F.W. Displacement detection in human vision. Vision Res. 21, 205–213 (1981).

    Article  CAS  Google Scholar 

  26. Murakami, I. & Shimojo, S. Modulation of motion aftereffect by surround motion and its dependence on stimulus size and eccentricity. Vision Res. 35, 1835–1844 (1995).

    Article  CAS  Google Scholar 

  27. Nakayama, K. & Tyler, C.W. Relative motion induced between stationary lines. Vision Res. 18, 1663–1668 (1978).

    Article  CAS  Google Scholar 

  28. Nawrot, M. & Sekuler, R. Assimilation and contrast in motion perception: explorations in cooperativity. Vision Res. 30, 1439–1451 (1990).

    Article  CAS  Google Scholar 

  29. Newsome, W.T., Britten, K.H. & Movshon, J.A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989).

    Article  CAS  Google Scholar 

  30. Shadlen, M.N., Britten, K.H., Newsome, W.T. & Movshon, J.A. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16, 1486–1510 (1996).

    Article  CAS  Google Scholar 

  31. Lee, S.-H. & Blake, R. Visual form created solely from temporal structure. Science 284, 1165–1168 (1999).

    Article  CAS  Google Scholar 

  32. Croner, L.J. & Albright, T.D. Image segmentation enhances discrimination of motion in visual noise. Vision Res. 37, 1415–1427 (1997).

    Article  CAS  Google Scholar 

  33. Lorenceau, J. & Alais, S. Form constraints in motion binding. Nat. Neurosci. 4, 745–751 (2001).

    Article  CAS  Google Scholar 

  34. Verghese, P. & Stone, L.S. Perceived visual speed constrained by image segmentation. Nature 381, 161–163 (1996).

    Article  CAS  Google Scholar 

  35. Croner, L.J. & Albright, T.D. Segmentation by color influences responses of motion-sensitive neurons in the cortical middle temporal visual area. J. Neurosci. 19, 3935–3951 (1999).

    Article  CAS  Google Scholar 

  36. Battaglia-Mayer, A. et al. Early coding of reaching in the parieto-occipital cortex. J. Neurophysiol. 83, 2374–2391 (2000).

    Article  CAS  Google Scholar 

  37. Snyder, L.H. Coordinate transformations for eye and arm movements in the brain. Curr. Opin. Neurobiol. 10, 747–754 (2000).

    Article  CAS  Google Scholar 

  38. Regan, D.M. Human Perception of Objects (Sinauer, Sunderland, Massachusetts, 2000).

    Google Scholar 

  39. Brainard, D.H. The psychophysics toolbox. Spat. Vis. 10, 443–446 (1997).

    Article  Google Scholar 

  40. Pelli, D.G. The Video Toolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

    Article  CAS  Google Scholar 

  41. Quick, R.F. Jr. A vector-magnitude model of contrast detection. Kybernetik 16, 65–67 (1974).

    Article  Google Scholar 

  42. Wichmann, F.A. & Hill, N.J. The psychometric function: I. Fitting, sampling, and goodness of fit. Percept. Psychophys. 63, 1293–1313 (2001).

    Article  CAS  Google Scholar 

  43. Wichmann, F.A. & Hill, N.J. The psychometric function: II. Bootstrap-based confidence intervals and sampling. Percept. Psychophys. 63, 1314–1329 (2001).

    Article  CAS  Google Scholar 

  44. Blake, R. & Yang, Y. Spatial and temporal coherence in perceptual binding. Proc. Natl. Acad. Sci. USA 94, 7115–7119 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by EY07760 to R.B., P30-EY08126 and T32-EY07135. We thank C. Freid, M. Gumina and B. Froelke for help with data collection, and M. Shiffrar and G. Logan for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duje Tadin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadin, D., Lappin, J., Blake, R. et al. What constitutes an efficient reference frame for vision?. Nat Neurosci 5, 1010–1015 (2002). https://doi.org/10.1038/nn914

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nn914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing