Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vacuum-ultraviolet frequency combs from below-threshold harmonics

Abstract

Recent demonstrations of high-harmonic generation (HHG) at very high repetition frequencies (100 MHz) may allow for the revolutionary transfer of frequency combs to the vacuum-ultraviolet range. This advance necessitates unifying optical frequency-comb technology with strong-field atomic physics. Whereas strong-field studies of HHG have often focused on above-threshold harmonic generation (photon energy above the ionization potential), for vacuum-ultraviolet frequency combs an understanding of below-threshold harmonic orders and their generation process is crucial. Here, we present a new and quantitative study of the harmonics 7–13 generated below and near the ionization threshold in xenon gas with an intense 1,070 nm driving field. We show multiple generation pathways for these harmonics that are manifested as on-axis interference in the harmonic yield. This discovery provides a new understanding of the strong-field, below-threshold dynamics under the influence of an atomic potential and allows us to quantitatively assess the achievable coherence of a vacuum-ultraviolet frequency comb generated through below-threshold harmonics. We find that under reasonable experimental conditions, temporal coherence is maintained. As evidence, we present the first explicit vacuum-ultraviolet frequency-comb structure beyond the third harmonic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Harmonic yield as a function of the intensity at the centre of the xenon jet.
Figure 2: Quantum path distributions calculated for harmonics 7–13.
Figure 3: Seventh-harmonic pulse-to-pulse coherence measurement.
Figure 4: Experimental set-up for the demonstration of vacuum-ultraviolet pulse-to-pulse coherence.

Similar content being viewed by others

References

  1. Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).

    Article  ADS  Google Scholar 

  2. Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

    Article  ADS  Google Scholar 

  3. Cundiff, S. T. & Ye, J. Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    Article  ADS  Google Scholar 

  4. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  5. Marian, A., Stowe, M. C., Lawall, J. R., Felinto, D. & Ye, J. United time-frequency spectroscopy for dynamics and global structure. Science 306, 2063–2068 (2004).

    Article  ADS  Google Scholar 

  6. Witte, S., Zinkstok, R. Th., Ubachs, W., Hogervorst, W. & Eikema, K. S. E. Deep-ultraviolet quantum interference metrology with ultrashort laser pulses. Science 307, 400–403 (2005).

    Article  ADS  Google Scholar 

  7. Zinkstok, R. Th., Witte, S., Ubachs, W., Hogervorst, W. & Eikema, K. S. E. Frequency comb laser spectroscopy in the vacuum-ultraviolet region. Phys. Rev. A 73, 061801 (2006).

    Article  ADS  Google Scholar 

  8. Lewenstein, M., Balcou, Ph., Ivanov, M. Y., L’Hullier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  9. Meckel, M. et al. Laser-induced electron tunneling and diffraction. Science 320, 1478–1482 (2008).

    Article  ADS  Google Scholar 

  10. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  ADS  Google Scholar 

  11. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article  ADS  Google Scholar 

  12. Lyngå, C. et al. Temporal coherence of high-order harmonics. Phys. Rev. A 60, 4823–4830 (1999).

    Article  ADS  Google Scholar 

  13. Cavalieri, S., Eramo, R., Materazzi, M., Corsi, C. & Bellini, M. Ramsey-type spectroscopy with high-order harmonics. Phys. Rev. Lett. 89, 133002 (2002).

    Article  ADS  Google Scholar 

  14. Gaarde, M. B., Tate, J. L. & Schafer, K. J. Macroscopic aspects of attosecond pulse generation. J. Phys. B 41, 132001 (2008).

    Article  ADS  Google Scholar 

  15. Schafer, K. J. & Kulander, K. C. High harmonic generation from ultrafast pump lasers. Phys. Rev. Lett. 78, 638–641 (1997).

    Article  ADS  Google Scholar 

  16. Balcou, Ph., Dederichs, A. S., Gaarde, M. B. & L’Huillier, A. Quantum-path analysis and phase matching of high-order harmonic generation and high-order frequency mixing processes in strong laser fields. J. Phys. B 32, 2973–2989 (1999).

    Article  ADS  Google Scholar 

  17. Gaarde, M. B. & Schafer, K. J. Quantum path distributions for high-order harmonics in rare gas atoms. Phys. Rev. A 65, 031406(R) (2002).

    Article  ADS  Google Scholar 

  18. Lewenstein, M., Salières, P. & L’Huillier, A. Phase of the atomic polarization in high-order harmonic generation. Phys. Rev. A 52, 4747–4754 (1995).

    Article  ADS  Google Scholar 

  19. Bellini, M. et al. Temporal coherence of ultrashort high-order harmonic pulses. Phys. Rev. Lett. 81, 297–300 (1998).

    Article  ADS  Google Scholar 

  20. Peatross, J. & Meyerhofer, D. Angular distribution of high-order harmonics emitted from rare gases at low density. Phys. Rev. A 51, R906–R909 (1995).

    Article  ADS  Google Scholar 

  21. Balcou, Ph. & L’Huillier, A. Phase matching effects in strong-field harmonic generation. Phys. Rev. A 47, 1447–1459 (1993).

    Article  ADS  Google Scholar 

  22. Ho, P. J. & Eberly, J. H. Different rescattering trajectories related to different total electron momenta in nonsequential double ionization. Opt. Express 11, 2826–2831 (2003).

    Article  ADS  Google Scholar 

  23. Nubbemeyer, T., Gorling, K., Saenz, A., Eichmann, U. & Sandner, W. Strong-field tunneling without ionization. Phys. Rev. Lett. 101, 233001 (2008).

    Article  ADS  Google Scholar 

  24. Shuman, E. S., Jones, R. R. & Gallagher, T. F. Multiphoton assisted recombination. Phys. Rev. Lett. 101, 263001 (2008).

    Article  ADS  Google Scholar 

  25. Zhu, M. & Hall, J. L. Stabilization of optical phase/frequency of a laser system: Application to a commercial dye laser with an external stabilizer. J. Opt. Soc. Am. B 10, 802–816 (1993).

    Article  ADS  Google Scholar 

  26. Xu, L. et al. Route to phase control of ultrashort light pulses. Opt. Lett. 21, 2008–2010 (1996).

    Article  ADS  Google Scholar 

  27. Hartl, I. et al. Cavity-enhanced similariton Yb-fiber laser frequency comb: 3×1014 W cm−2 peak intensity at 136 MHz. Opt. Lett. 32, 2870–2872 (2007).

    Article  ADS  Google Scholar 

  28. Schibli, T. R. et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nature Photon. 2, 355–359 (2008).

    Article  ADS  Google Scholar 

  29. Yost, D. C., Schibli, T. R. & Ye, J. Efficient output coupling of intracavity high-harmonic generation. Opt. Lett. 33, 1099–1101 (2008).

    Article  ADS  Google Scholar 

  30. He, X. et al. Spatial and spectral properties of the high-order harmonic emission in argon for seeding applications. Phys. Rev. A 79, 063829 (2009).

    Article  ADS  Google Scholar 

  31. Zaïr, A. et al. Quantum path interferences in high-order harmonic generation. Phys. Rev. Lett. 100, 143902 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully thank I. Hartl, A. Marcinkevičius and M. Fermann at IMRA America, for the design and construction of the high-power Yb-fibre laser system. Funding at JILA is provided by DARPA, NIST and NSF. Funding at LSU is provided by the NSF through grant numbers PHY-0449235 and PHY-0701372, and by the CCT at LSU. K.J.S. acknowledges support from the Ball Family Professorship. Portions of this research were conducted with high-performance computational resources provided by the Louisiana Optical Network Initiative (http://www.loni.org).

Author information

Authors and Affiliations

Authors

Contributions

The experimental work was carried out by the team at JILA: D.C.Y., T.R.S. and J.Y. The theoretical work was carried out by the team at LSU: J.L.T., J.H., M.B.G. and K.J.S. Manuscript preparation was completed by D.C.Y, J.Y., M.B.G. and K.J.S.

Corresponding author

Correspondence to Jun Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yost, D., Schibli, T., Ye, J. et al. Vacuum-ultraviolet frequency combs from below-threshold harmonics. Nature Phys 5, 815–820 (2009). https://doi.org/10.1038/nphys1398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1398

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing