Abstract
Some patients with schizophrenia show poor response to first-line antipsychotic treatments and this is termed treatment-resistant schizophrenia. The differential response to first-line antipsychotic drugs may reflect a different underlying neurobiology. Indeed, a previous study found dopamine synthesis capacity was significantly lower in patients with treatment-resistant schizophrenia. However, in this study, the treatment-resistant patients were highly symptomatic, whereas the responsive patients showed no or minimal symptoms. The study could not distinguish whether this was a trait effect or reflected the difference in symptom levels. Thus, we aimed to test whether dopaminergic function is altered in patients with a history of treatment resistance to first-line drugs relative to treatment responders when both groups are matched for symptom severity levels by recruiting treatment-resistant patients currently showed low symptom severity with the clozapine treatment. Healthy controls (n=12), patients treated with clozapine (n=12) who had not responded to first-line antipsychotics, and patients who had responded to first-line antipsychotics (n=12) were recruited. Participants were matched for age and sex and symptomatic severity level in patient groups. Participants’ dopamine synthesis capacity was measured by using [18F]DOPA PET. We found that patients treated with clozapine show lower dopamine synthesis capacity than patients who have responded to first-line treatment (Cohen’s d=0.9191 (whole striatum), 0.7781 (associative striatum), 1.0344 (limbic striatum), and 1.0189 (sensorimotor striatum) in line with the hypothesis that the dopaminergic function is linked to treatment response. This suggests that a different neurobiology may underlie treatment-resistant schizophrenia and that dopamine synthesis capacity may be a useful biomarker to predict treatment responsiveness.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS et al (2000). Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA 97: 8104–8109.
Agid O, Remington G, Kapur S, Arenovich T, Zipursky RB (2007). Early use of clozapine for poorly responding first-episode psychosis. J Clin Psychopharmacol 27: 369–373.
Agid O, Schulze L, Arenovich T, Sajeev G, McDonald K, Foussias G et al (2013). Antipsychotic response in first-episode schizophrenia: efficacy of high doses and switching. Eur Neuropsychopharmacol 23: 1017–1022.
Andreasen NC, Pressler M, Nopoulos P, Miller D, Ho BC (2010). Antipsychotic dose equivalents and dose-years: a standardized method for comparing exposure to different drugs. Biol Psychiatry 67: 255–262.
Bai YM, Ting Chen T, Chen JY, Chang WH, Wu B, Hung CH et al (2007). Equivalent switching dose from oral risperidone to risperidone long-acting injection: a 48-week randomized, prospective, single-blind pharmacokinetic study. J Clin Psychiatry 68: 1218–1225.
Beck K, McCutcheon R, Bloomfield MA, Gaughran F, Reis Marques T, MacCabe J et al (2014). The practical management of refractory schizophrenia—the Maudsley Treatment REview and Assessment Team service approach. Acta Psychiatr Scand 130: 427–438.
Bloomfield MA, Pepper F, Egerton A, Demjaha A, Tomasi G, Mouchlianitis E et al (2014). Dopamine function in cigarette smokers: an [(1)(8)F]-DOPA PET study. Neuropsychopharmacology 39: 2397–2404.
Bose SK, Turkheimer FE, Howes OD, Mehta MA, Cunliffe R, Stokes PR et al (2008). Classification of schizophrenic patients and healthy controls using [18F] fluorodopa PET imaging. Schizophr Res 106: 148–155.
Creese I, Burt DR, Snyder SH (1976). Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192: 481–483.
Dao-Castellana MH, Paillere-Martinot ML, Hantraye P, Attar-Levy D, Remy P, Crouzel C et al (1997). Presynaptic dopaminergic function in the striatum of schizophrenic patients. Schizophr Res 23: 167–174.
Demjaha A, Egerton A, Murray RM, Kapur S, Howes OD, Stone JM et al (2014). Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol Psychiatry 75: e11–e13.
Demjaha A, Murray RM, McGuire PK, Kapur S, Howes OD (2012). Dopamine synthesis capacity in patients with treatment-resistant schizophrenia. Am J Psychiatry 169: 1203–1210.
Duncan GE, Leipzig JN, Mailman RB, Lieberman JA (1998). Differential effects of clozapine and haloperidol on ketamine-induced brain metabolic activation. Brain Res 812: 65–75.
Egerton A, Demjaha A, McGuire P, Mehta MA, Howes OD (2010). The test-retest reliability of 18F-DOPA PET in assessing striatal and extrastriatal presynaptic dopaminergic function. Neuroimage 50: 524–531.
Elkashef AM, Doudet D, Bryant T, Cohen RM, Li SH, Wyatt RJ (2000). 6-(18)F-DOPA PET study in patients with schizophrenia. Positron emission tomography. Psychiatry Res 100: 1–11.
First M, Spitzer R, Gibbon M, Williams J (2002). Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Non-Patient Edition. (SCID-I/NP) New York: Biometrics Research, New York State Psychiatric Institute, November 2002.
Fischl B (2012). FreeSurfer. Neuroimage 62: 774–781.
Grace AA (1992). The depolarization block hypothesis of neuroleptic action: implications for the etiology and treatment of schizophrenia. J Neural Transm Suppl 36: 91–131.
Grace AA, Bunney BS (1986). Induction of depolarization block in midbrain dopamine neurons by repeated administration of haloperidol: analysis using in vivo intracellular recording. J Pharmacol Exp Ther 238: 1092–1100.
Grunder G, Vernaleken I, Muller MJ, Davids E, Heydari N, Buchholz HG et al (2003). Subchronic haloperidol downregulates dopamine synthesis capacity in the brain of schizophrenic patients in vivo. Neuropsychopharmacology 28: 787–794.
Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L et al (2003). Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Human Brain Mapp 19: 224–247.
Hietala J, Syvalahti E, Vilkman H, Vuorio K, Rakkolainen V, Bergman J et al (1999). Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia. Schizophr Res 35: 41–50.
Hietala J, Syvalahti E, Vuorio K, Rakkolainen V, Bergman J, Haaparanta M et al (1995). Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet 346: 1130–1131.
Howes O, Bose S, Turkheimer F, Valli I, Egerton A, Stahl D et al (2011a). Progressive increase in striatal dopamine synthesis capacity as patients develop psychosis: a PET study. Mol Psychiatry 16: 885–886.
Howes OD, Bose SK, Turkheimer F, Valli I, Egerton A, Valmaggia LR et al (2011b). Dopamine synthesis capacity before onset of psychosis: a prospective [18F]-DOPA PET imaging study. Am J Psychiatry 168: 1311–1317.
Howes OD, Egerton A, Allan V, McGuire P, Stokes P, Kapur S (2009a). Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. Curr Pharm Des 15: 2550–2559.
Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A et al (2012a). The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry 69: 776–786.
Howes OD, Kapur S (2014). A neurobiological hypothesis for the classification of schizophrenia: type A (hyperdopaminergic) and type B (normodopaminergic). Br J Psychiatry 205: 1–3.
Howes OD, Montgomery AJ, Asselin MC, Murray RM, Grasby PM, McGuire PK (2007). Molecular imaging studies of the striatal dopaminergic system in psychosis and predictions for the prodromal phase of psychosis. Br J Psychiatry Suppl 51: s13–s18.
Howes OD, Montgomery AJ, Asselin MC, Murray RM, Valli I, Tabraham P et al (2009b). Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 66: 13–20.
Howes OD, Murray RM (2014). Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet 383: 1677–1687.
Howes OD, Vergunst F, Gee S, McGuire P, Kapur S, Taylor D (2012b). Adherence to treatment guidelines in clinical practice: study of antipsychotic treatment prior to clozapine initiation. Br J Psychiatry 201: 481–485.
Howes OD, Williams M, Ibrahim K, Leung G, Egerton A, McGuire PK et al (2013). Midbrain dopamine function in schizophrenia and depression: a post-mortem and positron emission tomographic imaging study. Brain 136: 3242–3251.
Javitt DC, Duncan L, Balla A, Sershen H (2005). Inhibition of system A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action. Mol Psychiatry 10: 275–287.
Kane J, Honigfeld G, Singer J, Meltzer H (1988). Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 45: 789–796.
Kane JM (1989). The current status of neuroleptic therapy. J Clin Psychiatry 50: 322–328.
Kapur S, Zipursky R, Jones C, Remington G, Houle S (2000). Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 157: 514–520.
Kumakura Y, Cumming P, Vernaleken I, Buchholz HG, Siessmeier T, Heinz A et al (2007). Elevated [18F]fluorodopamine turnover in brain of patients with schizophrenia: an [18F]fluorodopa/positron emission tomography study. J Neurosci 27: 8080–8087.
Kumra S, Kranzler H, Gerbino-Rosen G, Kester HM, De Thomas C, Kafantaris V et al (2008). Clozapine and "high-dose" olanzapine in refractory early-onset schizophrenia: a 12-week randomized and double-blind comparison. Biol Psychiatry 63: 524–529.
Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999). Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46: 56–72.
Lindstrom LH, Gefvert O, Hagberg G, Lundberg T, Bergstrom M, Hartvig P et al (1999). Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(beta-11C) DOPA and PET. Biol Psychiatry 46: 681–688.
Lopez-Gil X, Babot Z, Amargos-Bosch M, Sunol C, Artigas F, Adell A (2007). Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology 32: 2087–2097.
Martinez D, Slifstein M, Broft A, Mawlawi O, Hwang D-R, Huang Y et al (2003). Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab 23: 285–300.
McGowan S, Lawrence AD, Sales T, Quested D, Grasby P (2004). Presynaptic dopaminergic dysfunction in schizophrenia: a positron emission tomographic [18F]fluorodopa study. Arch Gen Psychiatry 61: 134–142.
Medoff DR, Holcomb HH, Lahti AC, Tamminga CA (2001). Probing the human hippocampus using rCBF: contrasts in schizophrenia. Hippocampus 11: 543–550.
Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M et al (2002). Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5: 267–271.
Miller DD, Andreasen NC, O'Leary DS, Watkins GL, Boles Ponto LL, Hichwa RD (2001). Comparison of the effects of risperidone and haloperidol on regional cerebral blood flow in schizophrenia. Biol Psychiatry 49: 704–715.
Miller DD, Rezai K, Alliger R, Andreasen NC (1997). The effect of antipsychotic medication on relative cerebral blood perfusion in schizophrenia: assessment with technetium-99m hexamethyl-propyleneamine oxime single photon emission computed tomography. Biol Psychiatry 41: 550–559.
Mizrahi R, Addington J, Rusjan PM, Suridjan I, Ng A, Boileau I et al (2012). Increased stress-induced dopamine release in psychosis. Biol Psychiatry 71: 561–567.
Mouchlianitis E, Bloomfield MA, Law V, Beck K, Selvaraj S, Rasquinha N et al (2016). Treatment-resistant schizophrenia patients show elevated anterior cingulate cortex glutamate compared to treatment-responsive. Schizophr Bull 42: 744–752.
Neff NH, Wemlinger TA, Duchemin AM, Hadjiconstantinou M (2006). Clozapine modulates aromatic L-amino acid decarboxylase activity in mouse striatum. J Pharmacol Exp Ther 317: 480–487.
Nordstrom AL, Farde L, Wiesel FA, Forslund K, Pauli S, Halldin C et al (1993). Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 33: 227–235.
Nozaki S, Kato M, Takano H, Ito H, Takahashi H, Arakawa R et al (2009). Regional dopamine synthesis in patients with schizophrenia using L-[beta-11C]DOPA PET. Schizophr Res 108: 78–84.
Ottong SE, Garver DL (1997). A biomodal distribution of plasma HVA/MHPG in the psychoses. Psychiatry Res 69: 97–103.
Patlak CS, Blasberg RG (1985). Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5: 584–590.
Rademacher L, Prinz S, Winz O, Henkel K, Dietrich CA, Schmaljohann J et al (2015). Effects of smoking cessation on presynaptic dopamine function of addicted male smokers. Biol Psychiatry 80: 198–206.
Reith J, Benkelfat C, Sherwin A, Yasuhara Y, Kuwabara H, Andermann F et al (1994). Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc Natl Acad Sci USA 91: 11651–11654.
Remington G, Agid O, Foussias G, Hahn M, Rao N, Sinyor M (2013). Clozapine's role in the treatment of first-episode schizophrenia. Am J Psychiatry 170: 146–151.
Roberts RC, Roche JK, Conley RR, Lahti AC (2009). Dopaminergic synapses in the caudate of subjects with schizophrenia: relationship to treatment response. Synapse 63: 520–530.
Salokangas RK, Vilkman H, Ilonen T, Taiminen T, Bergman J, Haaparanta M et al (2000). High levels of dopamine activity in the basal ganglia of cigarette smokers. Am J Psychiatry 157: 632–634.
Selvaraj S, Arnone D, Cappai A, Howes O (2014). Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev 45: 233–245.
Shilliam CS, Dawson LA (2005). The effect of clozapine on extracellular dopamine levels in the shell subregion of the rat nucleus accumbens is reversed following chronic administration: comparison with a selective 5-HT(2C) receptor antagonist. Neuropsychopharmacology 30: 372–380.
Shotbolt P, Stokes PR, Owens SF, Toulopoulou T, Picchioni MM, Bose SK et al (2011). Striatal dopamine synthesis capacity in twins discordant for schizophrenia. Psychol Med 41: 2331–2338.
Stone JM, Howes OD, Egerton A, Kambeitz J, Allen P, Lythgoe DJ et al (2010). Altered relationship between hippocampal glutamate levels and striatal dopamine function in subjects at ultra high risk of psychosis. Biol Psychiatry 68: 599–602.
Suzuki T, Uchida H, Watanabe K, Nomura K, Takeuchi H, Tomita M et al (2007). How effective is it to sequentially switch among Olanzapine, Quetiapine and Risperidone?—A randomized, open-label study of algorithm-based antipsychotic treatment to patients with symptomatic schizophrenia in the real-world clinical setting. Psychopharmacology (Berl) 195: 285–295.
Turkheimer FE, Brett M, Visvikis D, Cunningham VJ (1999). Multiresolution analysis of emission tomography images in the wavelet domain. J Cereb Blood Flow Metab 19: 1189–1208.
Vernaleken I, Kumakura Y, Cumming P, Buchholz HG, Siessmeier T, Stoeter P et al (2006). Modulation of [18F]fluorodopa (FDOPA) kinetics in the brain of healthy volunteers after acute haloperidol challenge. Neuroimage 30: 1332–1339.
Yoshimura R, Ueda N, Shinkai K, Nakamura J (2003). Plasma levels of homovanillic acid and the response to risperidone in first episode untreated acute schizophrenia. Int Clin Psychopharmacol 18: 107–111.
Author information
Authors and Affiliations
Corresponding author
PowerPoint slides
Rights and permissions
About this article
Cite this article
Kim, E., Howes, O., Veronese, M. et al. Presynaptic Dopamine Capacity in Patients with Treatment-Resistant Schizophrenia Taking Clozapine: An [18F]DOPA PET Study. Neuropsychopharmacol 42, 941–950 (2017). https://doi.org/10.1038/npp.2016.258
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/npp.2016.258
This article is cited by
-
The role of low subcortical iron, white matter myelin, and oligodendrocytes in schizophrenia: a quantitative susceptibility mapping and diffusion tensor imaging study
Molecular Psychiatry (2026)
-
Associations of neuromelanin in the substantia nigra with antipsychotic response in schizophrenia
Neuropsychopharmacology (2026)
-
Dopamine synthesis capacity in patients with remitted psychosis: correlates and one year outcome on relapse
European Archives of Psychiatry and Clinical Neuroscience (2026)
-
Genetic risk for treatment resistant schizophrenia and corresponding variation in dopamine synthesis capacity and D2/3 receptor availability in healthy individuals
Molecular Psychiatry (2025)
-
Investigating dopaminergic abnormalities in schizophrenia and first-episode psychosis with normative modelling and multisite molecular neuroimaging
Molecular Psychiatry (2025)


