Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antitumour effects of antiretroviral therapy

Key Points

  • Infection with the human immunodeficincy virus (HIV) increases a patient's risk for developing certain types of cancers.

  • Immune hyperactivation, due to uncontrolled HIV replication, and immune deficiency have been shown to be the key factors in the initiation and progression of these cancers, particularly Kaposi's sarcoma and B-cell lymphomas, in HIV-infected patients.

  • Highly active antiretroviral therapy (HAART) reduces cancer risk and tumour burden in HIV-infected individuals.

  • The effects of these drugs cannot be entirely explained by their ability to suppress HIV replication and restore normal immune function — tumour development is not always correlated with a patient's viral load or level of immune reconstitution.

  • Direct antitumour effects of HAART could be related to specific actions of the protease inhibitors included in this therapeutic cocktail, such as ritonavir, saquinavir, indinavir and nelfinavir. These drugs have been shown to inhibit proliferation and induce apoptosis in cultured cancer cells, to block endothelial- and tumour-cell invasion, in vivo angiogenesis and tumour growth, as well as the inflammatory response.

  • The ability of these drugs to prevent tumour growth and progression might be mediated by their ability to inhibit proteasome function and the activity of matrix metalloproteinases.

  • As HAART has already been shown to be safe and effective for the treatment of patients with AIDS, these drugs might be exploited, alone or in combination with conventional cytotoxic therapy, for the treatment of non-HIV-infected patients with cancer.

Abstract

Infection by human immunodeficiency virus (HIV) is associated with an increased risk of certain tumours, particularly Kaposi's sarcoma, non-Hodgkin's lymphomas and cervical cancer. However, the incidence of these tumours in HIV-infected patients has decreased significantly since the widespread use of highly active antiretroviral therapy (HAART). This effect cannot be solely explained by the ability of these drugs to suppress HIV replication and thereby reconstitute the immune system. Recent studies have shown that inhibitors of the HIV aspartyl protease, which are widely used in HAART, have direct anti-angiogenic and antitumour effects that are unrelated to their antiviral activity. So these drugs might be used to treat cancer in patients who are not infected with HIV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steps in tumour progression and metastasis affected by HIV-protease inhibitors.
Figure 2: Molecular targets of antiviral agents.

Similar content being viewed by others

References

  1. Munoz, A. et al. Trends in the incidence of outcomes defining acquired immunodeficiency syndrome (AIDS) in the Multicenter AIDS Cohort Study: 1985–1991. Am. J. Epidemiol. 137, 1985–1991 (1993).

    Article  Google Scholar 

  2. Detels, R. et al. Effectiveness of potent antiretroviral therapy on time to AIDS and death in men with known HIV infection duration. Multicenter AIDS Cohort Study Investigators. JAMA 280, 1497–1503 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Pomerantz, R. J. & Horn, D. L. Twenty years of therapy for HIV-1 infection. Nature Med. 9, 867–873 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Autran, B. et al. Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 277, 112–116 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Douek, D. C. et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 396, 690–695 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Gulick, R. M. et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N. Engl. J. Med. 337, 734–739 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Gulick, R. M. et al. 3-year suppression of HIV viremia with indinavir, zidovudine, and lamivudine. Ann. Intern. Med. 133, 35–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. International Collaboration on HIV and Cancer. Highly active antiretroviral therapy and incidence of cancer in human immunodeficiency virus-infected adults. J. Natl. Cancer Inst. 92, 1823–1830 (2000). A large survey analysing tumour incidence in 48,000 HIV-infected individuals from 23 cohort studies, comparing incidence rates in years before the advent of HAART (1992–1996) to rates in years after the widespread use of HAART (1997–1999).

  9. Heard, I., Schmitz, V., Costagliola, D., Orth, G. & Kazatchkine, M. D. Early regression of cervical lesions in HIV-seropositive women receiving highly active antiretroviral therapy. AIDS 12, 1459–1464 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Mo, Y. et al. Simultaneous targeting of telomeres and telomerase as a cancer therapeutic approach. Cancer Res. 63, 579–585 (2003).

    CAS  PubMed  Google Scholar 

  11. Ghosh, S. K. et al. Potentiation of TRAIL-induced apoptosis in primary effusion lymphoma through azidothymidine-mediated inhibition of NF-κB. Blood 101, 2321–2327 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Morgan, R. J. Jr et al. Phase I study of cisdiamminedichloroplatinum in combination with azidothymidine in the treatment of patients with advanced malignancies. Cancer Chemother. Pharmacol. 51, 459–464 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Rarick, M. U. et al. Treatment of epidemic Kaposi's sarcoma with combination chemotherapy (vincristine and bleomycin) and zidovudine. Ann. Oncol. 1, 147–149 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Portsmouth, S. et al. A comparison of regimens based on non-nucleoside reverse transcriptase inhibitors or protease inhibitors in preventing Kaposi's sarcoma. AIDS 17, F17–F22 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Rabkin, C. S., Testa, M. A., Huang, J. & Von Roenn, J. H. Kaposi's sarcoma and non-Hodgkin's lymphoma incidence trends in AIDS Clinical Trial Group study participants. J. Acquir. Immune Defic. Syndr. 21, S31–S33 (1999).

    CAS  PubMed  Google Scholar 

  16. Stebbing, J. et al. Antiretroviral treatment regimens and immune parameters in the prevention of systemic AIDS-related non-Hodgkin's lymphoma. J. Clin. Oncol. 22, 2177–2183 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Aaron, L., Lidove, O., Yousry, C., Dupont, B. & Viard, J. P. Human herpesvirus 8-positive Castleman disease in human immunodeficiency virus-infected patients: the impact of highly active antiretroviral therapy. Clin. Infect. Dis. 35, 880–882 (2002).

    Article  PubMed  Google Scholar 

  18. Carre, D. et al. Epidermodysplasia verruciformis in a patient with HIV infection: no response to highly active antiretroviral therapy. Int. J. Dermatol. 42, 296–300 (2003).

    Article  PubMed  Google Scholar 

  19. Kirk, O. et al. Non-Hodgkin lymphoma in HIV-infected patients in the era of highly active antiretroviral therapy. Blood 98, 3406–3412 (2001). An extensive retrospective multicentric study identifying a significant decrease in all NHL subtypes in patients treated with HAART compared with patients treated with non-HAART regimens, or to untreated patients. Importantly, this study shows an additional decreased risk of NHL in patients who did not respond to HAART therapy.

    Article  CAS  PubMed  Google Scholar 

  20. Andre, P. et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc. Natl Acad. Sci. USA 95, 13120–13124 (1998). Shows for the first time that HIV-PIs can affect cancer-related host-cell pathways in HIV-free models, both in vitro and in vivo . This paper has lead to the concept that PI–HAART might affect tumour immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pajonk, F., Himmelsbach, J., Riess, K., Sommer, A. & McBride, W. H. The human immunodeficiency virus (HIV)-1 protease inhibitor saquinavir inhibits proteasome function and causes apoptosis and radiosensitization in non-HIV-associated human cancer cells. Cancer Res. 62, 5230–5235 (2002). Shows that, due to actions on the cell proteasome, PI–HAART might cooperate with radiotherapy in tumour eradication.

    CAS  PubMed  Google Scholar 

  22. Sgadari, C. et al. HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nature Med. 8, 225–232 (2002). The authors used non-HIV infected in vitro and in vivo models to show that HIV-PIs inhibit angiogenesis and tumour growth by blocking MMP2 activation.

    Article  CAS  PubMed  Google Scholar 

  23. Ensoli, B., Sturzl, M. & Monini, P. Reactivation and role of HHV-8 in Kaposi's sarcoma initiation. Adv. Cancer Res. 81, 161–200 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Chun, T. W., Chadwick, K., Margolick, J. & Siliciano, R. F. Differential susceptibility of naive and memory CD4+ T cells to the cytopathic effects of infection with human immunodeficiency virus type 1 strain LAI. J. Virol. 71, 4436–4444 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schnittman, S. M. et al. Preferential infection of CD4+ memory T cells by human immunodeficiency virus type 1: evidence for a role in the selective T-cell functional defects observed in infected individuals. Proc. Natl Acad. Sci. USA 87, 6058–6062 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Engels, E. A. et al. Detection and quantification of Kaposi's sarcoma-associated herpesvirus to predict AIDS-associated Kaposi's sarcoma. AIDS 17, 1847–1851 (2003).

    Article  PubMed  Google Scholar 

  27. Mbulaiteye, S. M., Biggar, R. J., Goedert, J. J. & Engels, E. A. Immune deficiency and risk for malignancy among persons with AIDS. J. Acquir. Immune. Defic. Syndr. 32, 527–533 (2003). Describes the relationship between CD4+ T-cell loss and tumour risk in HIV-infected individuals, pointing to an immune-deficiency threshold for certain types of cancers.

    Article  PubMed  Google Scholar 

  28. Rezza, G. et al. Human herpesvirus 8 seropositivity and risk of Kaposi's sarcoma and other acquired immunodeficiency syndrome-related diseases. J. Natl. Cancer Inst. 91, 1468–1474 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Gao, S. J. et al. Seroconversion to antibodies against Kaposi's sarcoma-associated herpesvirus-related latent nuclear antigens before the development of Kaposi's sarcoma. N. Engl. J. Med. 335, 233–241 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Malnati, M. et al. Retrospective analysis of HHV-8 viremia and cellular viral load in HIV-seropositive patients receiving interleukin 2 in combination with antiretroviral therapy. Blood 100, 1575–1578 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Quinlivan, E. B. et al. Elevated virus loads of Kaposi's sarcoma-associated human herpesvirus 8 predict Kaposi's sarcoma disease progression, but elevated levels of human immunodeficiency virus type 1 do not. J. Infect. Dis. 185, 1736–1744 (2002).

    Article  PubMed  Google Scholar 

  32. Whitby, D. et al. Detection of Kaposi sarcoma associated herpesvirus in peripheral blood of HIV-infected individuals and progression to Kaposi's sarcoma. Lancet 346, 799–802 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Kersten, M. J., Klein, M. R., Holwerda, A. M., Miedema, F. & van Oers, M. H. Epstein–Barr virus-specific cytotoxic T cell responses in HIV-1 infection: different kinetics in patients progressing to opportunistic infection or non-Hodgkin's lymphoma. J. Clin. Invest. 99, 1525–1533 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Baarle, D. et al. Dysfunctional Epstein–Barr virus (EBV)-specific CD8+ T lymphocytes and increased EBV load in HIV-1 infected individuals progressing to AIDS-related non-Hodgkin lymphoma. Blood 98, 146–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. van Baarle, D. et al. Lack of Epstein–Barr virus- and HIV-specific CD27-CD8+ T cells is associated with progression to viral disease in HIV-infection. AIDS 16, 2001–2011 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Davi, F. et al. Burkitt-like lymphomas in AIDS patients: characterization within a series of 103 human immunodeficiency virus-associated non-Hodgkin's lymphomas. Burkitt's Lymphoma Study Group. J. Clin. Oncol. 16, 3788–3795 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Pedersen, C. et al. HIV-associated lymphoma: histopathology and association with Epstein–Barr virus genome related to clinical, immunological and prognostic features. Eur. J. Cancer 27, 1416–1423 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Pluda, J. M. et al. Parameters affecting the development of non-Hodgkin's lymphoma in patients with severe human immunodeficiency virus infection receiving antiretroviral therapy. J. Clin. Oncol. 11, 1099–1107 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Roithmann, S., Tourani, J. M. & Andrieu, J. M. AIDS-associated non-Hodgkin lymphoma. Lancet 338, 884–885 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Skiest, D. J. & Crosby, C. Survival is prolonged by highly active antiretroviral therapy in AIDS patients with primary central nervous system lymphoma. AIDS 17, 1787–1793 (2003).

    Article  PubMed  Google Scholar 

  41. Tirelli, U. et al. Hodgkin's disease and human immunodeficiency virus infection: clinicopathologic and virologic features of 114 patients from the Italian Cooperative Group on AIDS and Tumors. J. Clin. Oncol. 13, 1758–1767 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Grossman, Z., Meier-Schellersheim, M., Sousa, A. E., Victorino, R. M. & Paul, W. E. CD4+ T-cell depletion in HIV infection: are we closer to understanding the cause? Nature Med. 8, 319–323 (2002). An important overview highlighting the role of immune activation in T-cell losses in HIV infection.

    Article  CAS  PubMed  Google Scholar 

  43. Hellerstein, M. K. et al. Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection. J. Clin. Invest. 112, 956–966 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kovacs, J. A. et al. Identification of dynamically distinct subpopulations of T lymphocytes that are differentially affected by HIV. J. Exp. Med. 194, 1731–1741 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ribeiro, R. M., Mohri, H., Ho, D. D. & Perelson, A. S. In vivo dynamics of T cell activation, proliferation, and death in HIV-1 infection: why are CD4+ but not CD8+ T cells depleted? Proc. Natl Acad. Sci. USA 99, 15572–15577 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fiorelli, V., Gendelman, R., Samaniego, F., Markham, P. D. & Ensoli, B. Cytokines from activated T cells induce normal endothelial cells to acquire the phenotypic and functional features of AIDS-Kaposi's sarcoma spindle cells. J. Clin. Invest 95, 1723–1734 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fiorelli, V. et al. IFN-γ induces endothelial cells to proliferate and to invade the extracellular matrix in response to the HIV-1 Tat protein: implications for AIDS-Kaposi's sarcoma pathogenesis. J. Immunol. 162, 1165–1170 (1999).

    CAS  PubMed  Google Scholar 

  48. Barillari, G. et al. Inflammatory cytokines synergize with the HIV-1 Tat protein to promote angiogenesis and Kaposi's sarcoma via induction of basic fibroblast growth factor and the αvβ3 integrin. J. Immunol. 163, 1929–1935 (1999).

    CAS  PubMed  Google Scholar 

  49. Barillari, G. et al. The Tat protein of human immunodeficiency virus type-1 promotes vascular cell growth and locomotion by engaging the α5β1 and αvβ3 integrins and by mobilizing sequestered basic fibroblast growth factor. Blood 94, 663–672 (1999).

    CAS  PubMed  Google Scholar 

  50. Ensoli, B. et al. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi's sarcoma. Nature 371, 674–680 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Chang, H. C., Samaniego, F., Nair, B. C., Buonaguro, L. & Ensoli, B. HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS 11, 1421–1431 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Ensoli, B., Barillari, G., Salahuddin, S. Z., Gallo, R. C. & Wong-Staal, F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature 345, 84–86 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Toschi, E. et al. Activation of matrix-metalloproteinase-2 and membrane-type-1-matrix-metalloproteinase in endothelial cells and induction of vascular permeability in vivo by human immunodeficiency virus-1 Tat protein and basic fibroblast growth factor. Mol. Biol. Cell 12, 2934–2946 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Browning, P. J. et al. Identification and culture of Kaposi's sarcoma-like spindle cells from the peripheral blood of human immunodeficiency virus-1-infected individuals and normal controls. Blood 84, 2711–2720 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Fiorelli, V. et al. γ-Interferon produced by CD8+ T cells infiltrating Kaposi's sarcoma induces spindle cells with angiogenic phenotype and synergy with human immunodeficiency virus-1 Tat protein: an immune response to human herpesvirus-8 infection? Blood 91, 956–967 (1998).

    CAS  PubMed  Google Scholar 

  56. Monini, P. et al. Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi's sarcoma. Blood 93, 4044–4058 (1999).

    CAS  PubMed  Google Scholar 

  57. Sirianni, M. C. et al. γ-Interferon production in peripheral blood mononuclear cells and tumor infiltrating lymphocytes from Kaposi's sarcoma patients: correlation with the presence of human herpesvirus-8 in peripheral blood mononuclear cells and lesional macrophages. Blood 91, 968–976 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Samaniego, F., Markham, P. D., Gallo, R. C. & Ensoli, B. Inflammatory cytokines induce AIDS-Kaposi's sarcoma-derived spindle cells to produce and release basic fibroblast growth factor and enhance Kaposi's sarcoma-like lesion formation in nude mice. J. Immunol. 154, 3582–3592 (1995).

    CAS  PubMed  Google Scholar 

  59. Samaniego, F. et al. Vascular endothelial growth factor and basic fibroblast growth factor present in Kaposi's sarcoma (KS) are induced by inflammatory cytokines and synergize to promote vascular permeability and KS lesion development. Am. J. Pathol. 152, 1433–1443 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Samaniego, F., Markham, P. D., Gendelman, R., Gallo, R. C. & Ensoli, B. Inflammatory cytokines induce endothelial cells to produce and release basic fibroblast growth factor and to promote Kaposi's sarcoma-like lesions in nude mice. J. Immunol. 158, 1887–1894 (1997).

    CAS  PubMed  Google Scholar 

  61. Aboulafia, D., Miles, S. A., Saks, S. R. & Mitsuyasu, R. T. Intravenous recombinant tumor necrosis factor in the treatment of AIDS-related Kaposi's sarcoma. J. Acquir. Immune Defic. Syndr. 2, 54–58 (1989).

    CAS  PubMed  Google Scholar 

  62. Krigel, R. L., Padavic-Shaller, K. A., Rudolph, A. R., Poiesz, B. J. & Comis, R. L. Exacerbation of epidemic Kaposi's sarcoma with a combination of interleukin-2 and β-interferon: results of a phase 2 study. J. Biol. Response Mod. 8, 359–365 (1989).

    CAS  PubMed  Google Scholar 

  63. Fagnoni, F. F. et al. Expansion of cytotoxic CD8+ CD28 T cells in healthy ageing people, including centenarians. Immunology 88, 501–507 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McNerlan, S. E., Rea, I. M. & Alexander, H. D. A whole blood method for measurement of intracellular TNF-α, IFN-γ and IL-2 expression in stimulated CD3+ lymphocytes: differences between young and elderly subjects. Exp. Gerontol. 37, 227–234 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Zanni, F. et al. Marked increase with age of type 1 cytokines within memory and effector/cytotoxic CD8+ T cells in humans: a contribution to understand the relationship between inflammation and immunosenescence. Exp. Gerontol. 38, 981–987 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Touloumi, G. et al. The role of immunosuppression and immune-activation in classic Kaposi's sarcoma. Int. J. Cancer 82, 817–821 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Clerici, M. et al. Immune activation in africa is environmentally-driven and is associated with upregulation of CCR5. Italian-Ugandan AIDS Project. AIDS 14, 2083–2092 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Kestens, L. et al. Endemic African Kaposi's sarcoma is not associated with immunodeficiency. Int. J. Cancer 36, 49–54 (1985).

    Article  CAS  PubMed  Google Scholar 

  69. Rizzardini, G. et al. Immunological activation markers in the serum of African and European HIV-seropositive and seronegative individuals. AIDS 10, 1535–1542 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Frances, C. et al. Outcome of kidney transplant recipients with previous human herpesvirus-8 infection. Transplantation 69, 1776–1779 (2003).

    Article  Google Scholar 

  71. Barete, S. et al. Clinical features and contribution of virological findings to the management of Kaposi sarcoma in organ-allograft recipients. Arch. Dermatol. 136, 1452–1458 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Montagnino, G., Bencini, P. L., Tarantino, A., Caputo, R. & Ponticelli, C. Clinical features and course of Kaposi's sarcoma in kidney transplant patients: report of 13 cases. Am. J. Nephrol. 14, 121–126 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Pelicci, P. G. et al. Multiple monoclonal B cell expansions and c-myc oncogene rearrangements in acquired immune deficiency syndrome-related lymphoproliferative disorders. Implications for lymphomagenesis. J. Exp. Med. 164, 2049–2060 (2003).

    Article  Google Scholar 

  74. Carbone, A. Emerging pathways in the development of AIDS-related lymphomas. Lancet Oncol. 4, 22–29 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Lefevre, E. A., Krzysiek, R., Loret, E. P., Galanaud, P. & Richard, Y. Cutting edge: HIV-1 Tat protein differentially modulates the B cell response of naive, memory, and germinal center B cells. J. Immunol. 163, 1119–1122 (1999).

    CAS  PubMed  Google Scholar 

  76. Kundu, R. K. et al. Expression of the human immunodeficiency virus-Tat gene in lymphoid tissues of transgenic mice is associated with B-cell lymphoma. Blood 94, 275–282 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Hazenberg, M. D. et al. T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood 95, 249–255 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Hazenberg, M. D. et al. Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection. Nature Med. 9, 1036–1042 (2000).

    Article  CAS  Google Scholar 

  79. Morris, L. et al. HIV-1 antigen-specific and-nonspecific B cell responses are sensitive to combination antiretroviral therapy. J. Exp. Med. 188, 233–245 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, Z. Q. et al. Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection. Proc. Natl Acad. Sci. USA 95, 1154–1159 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mohri, H. et al. Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J. Exp. Med. 194, 1277–1287 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Franco, J. M. et al. T-cell repopulation and thymic volume in HIV-1-infected adult patients after highly active antiretroviral therapy. Blood 99, 3702–3706 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Pakker, N. G. et al. Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: a composite of redistribution and proliferation. Nature Med. 4, 214–218 (1998).

    Article  Google Scholar 

  84. Lebbe, C. et al. Clinical and biological impact of antiretroviral therapy with protease inhibitors on HIV-related Kaposi's sarcoma. AIDS 12, F45–F49 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Gerard, L. et al. Improved survival in HIV-related Hodgkin's lymphoma since the introduction of highly active antiretroviral therapy. AIDS 17, 81–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Antinori, A. et al. Better response to chemotherapy and prolonged survival in AIDS-related lymphomas responding to highly active antiretroviral therapy. AIDS 15, 1483–1491 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Bower, M. et al. Highly active anti-retroviral therapy (HAART) prolongs time to treatment failure in Kaposi's sarcoma. AIDS 13, 2105–2111 (1999). Provides indirect evidence that HAART can be used as a maintenance therapy for patients with Kaposi's sarcoma because of effects unrelated to HIV suppression and immune reconstitution.

    Article  CAS  PubMed  Google Scholar 

  88. Hoffmann, C. et al. Response to highly active antiretroviral therapy strongly predicts outcome in patients with AIDS-related lymphoma. AIDS 17, 1521–1529 (2003).

    Article  PubMed  Google Scholar 

  89. Holkova, B. et al. Effect of highly active antiretroviral therapy on survival in patients with AIDS-associated pulmonary Kaposi's sarcoma treated with chemotherapy. J. Clin. Oncol. 19, 3848–3851 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Ahdieh-Grant, L. et al. Highly active antiretroviral therapy and cervical squamous intraepithelial lesions in human immunodeficiency virus-positive women. J. Natl. Cancer Inst. 96, 1070–1076 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. McGowan, J. P. & Shah, S. Long-term remission of AIDS-related primary central nervous system lymphoma associated with highly active antiretroviral therapy. AIDS 12, 952–954 (1998).

    CAS  PubMed  Google Scholar 

  92. Nasti, G. et al. AIDS-related Kaposi's Sarcoma: evaluation of potential new prognostic factors and assessment of the AIDS Clinical Trial Group Staging System in the Haart Era — the Italian Cooperative Group on AIDS and Tumors and the Italian Cohort of Patients Naive From Antiretrovirals. J. Clin. Oncol. 21, 2876–2882 (2003).

    Article  PubMed  Google Scholar 

  93. Tam, H. K. et al. Effect of highly active antiretroviral therapy on survival among HIV-infected men with Kaposi sarcoma or non-Hodgkin lymphoma. Int. J. Cancer 98, 916–922 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Wilkinson, J. et al. Identification of Kaposi's sarcoma-associated herpesvirus (KSHV)- specific cytotoxic T-lymphocyte epitopes and evaluation of reconstitution of KSHV-specific responses in human immunodeficiency virus type 1-Infected patients receiving highly active antiretroviral therapy. J. Virol. 76, 2634–2640 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Carrieri, M. P. et al. Reduced incidence of Kaposi's sarcoma and of systemic non-hodgkin's lymphoma in HIV-infected individuals treated with highly active antiretroviral therapy. Int. J. Cancer 103, 142–144 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Heard, I., Tassie, J. M., Kazatchkine, M. D. & Orth, G. Highly active antiretroviral therapy enhances regression of cervical intraepithelial neoplasia in HIV-seropositive women. AIDS 16, 1799–1802 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Kostense, S. et al. Functional restoration of human immunodeficiency virus and Epstein–Barr virus-specific CD8+ T cells during highly active antiretroviral therapy is associated with an increase in CD4+ T cells. Eur J. Immunol. 32, 1080–1089 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Grulich, A. E., Li, Y., Correll, P. K., Law, M. G. & Kaldor, J. M. Decreasing rates of Kaposi's sarcoma and non-Hodgkin's lymphoma in the era of potent combination anti-retroviral therapy. AIDS 15, 629–633 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Sparano, J. A. et al. Effect of highly active antiretroviral therapy on the incidence of HIV-associated malignancies at an urban medical center. J. Acquir. Immune Defic. Syndr. 21, S18–S22 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Gaidano, G., Capello, D. & Carbone, A. The molecular basis of acquired immunodeficiency syndrome-related lymphomagenesis. Semin. Oncol. 27, 431–441 (2000).

    CAS  PubMed  Google Scholar 

  101. Xu, J. et al. Analysis and significance of anti-latent membrane protein-1 antibodies in the sera of patients with EBV-associated diseases. J. Immunol. 164, 2815–2822 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Duraiswamy, J. et al. Ex vivo analysis of T-cell responses to Epstein–Barr virus-encoded oncogene latent membrane protein 1 reveals highly conserved epitope sequences in virus isolates from diverse geographic regions. J. Virol. 77, 7401–7410 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cattelan, A. M. et al. Acquired immunodeficiency syndrome-related Kaposi's sarcoma regression after highly active antiretroviral therapy: biologic correlates of clinical outcome. J. Natl Cancer Inst. Monogr. 28, 44–49 (2001).

    Google Scholar 

  104. Chotmongkol, V. & Pesee, M. AIDS-related primary central nervous system lymphoma: prolonged remission associated with highly active antiretroviral therapy. J. Med. Assoc. Thai. 85, 634–637 (2002).

    PubMed  Google Scholar 

  105. Dupont, C. et al. Long-term efficacy on Kaposi's sarcoma of highly active antiretroviral therapy in a cohort of HIV-positive patients. CISIH 92. Centre d'information et de soins de l'immunodeficience humaine. AIDS 14, 987–993 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Navarro, J. T., Ribera, J. M., Oriol, A., Milla, F. & Feliu, E. Improved outcome of AIDS-related lymphoma in patients with virologic response to highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 32, 347–348 (2003).

    Article  PubMed  Google Scholar 

  107. Nunez, M., Machuca, A., Soriano, V., Podzamczer, D. & Gonzalez-Lahoz, J. Clearance of human herpesvirus type 8 viraemia in HIV-1-positive patients with Kaposi's sarcoma treated with liposomal doxorubicin. Caelyx/KS Spanish Study Group. AIDS 14, 913–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Pellet, C. et al. Virologic and immunologic parameters that predict clinical response of AIDS-associated Kaposi's sarcoma to highly active antiretroviral therapy. J. Invest. Dermatol. 117, 858–863 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Conant, M. A., Opp, K. M., Poretz, D. & Mills, R. G. Reduction of Kaposi's sarcoma lesions following treatment of AIDS with ritonovir. AIDS 11, 1300–1301 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Hocqueloux, L., Agbalika, F., Oksenhendler, E. & Molina, J. M. Long-term remission of an AIDS-related primary effusion lymphoma with antiviral therapy. AIDS 15, 280–282 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Murphy, M., Armstrong, D., Sepkowitz, K. A., Ahkami, R. N. & Myskowski, P. L. Regression of AIDS-related Kaposi's sarcoma following treatment with an HIV-1 protease inhibitor. AIDS 11, 261–262 (1997).

    CAS  PubMed  Google Scholar 

  112. Paparizos, V. A., Kyriakis, K. P., Papastamopoulos, V., Hadjivassiliou, M. & Stavrianeas, N. G. Response of AIDS-associated Kaposi sarcoma to highly active antiretroviral therapy alone. J. Acquir. Immune. Defic. Syndr. 30, 257–258 (2002).

    Article  PubMed  Google Scholar 

  113. Parra, R. et al. Regression of invasive AIDS-related Kaposi's sarcoma following antiretroviral therapy. Clin. Infect. Dis. 26, 218–219 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Robinson, W. R., Hamilton, C. A., Michaels, S. H. & Kissinger, P. Effect of excisional therapy and highly active antiretroviral therapy on cervical intraepithelial neoplasia in women infected with human immunodeficiency virus. Am. J. Obstet. Gynecol. 184, 538–543 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Robinson, W. R. & Freeman, D. Improved outcome of cervical neoplasia in HIV-infected women in the era of highly active antiretroviral therapy. AIDS Patient Care STDS 16, 61–65 (2002).

    Article  PubMed  Google Scholar 

  116. Sarkodee-Adoo, C. et al. Regression and clonally distinct recurrence of human immunodeficiency virus related Burkitt-like lymphoma during antiretroviral therapy. Leuk. Lymphoma 42, 1125–1131 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Uberti-Foppa, C. et al. Long-term effect of highly active antiretroviral therapy on cervical lesions in HIV-positive women. AIDS 17, 2136–2138 (2003).

    Article  PubMed  Google Scholar 

  118. Boivin, G. et al. Evaluation of the human herpesvirus 8 DNA load in blood and Kaposi's sarcoma skin lesions from AIDS patients on highly active antiretroviral therapy. AIDS 14, 1907–1910 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Benfield, T. L., Kirk, O., Elbrond, B. & Pedersen, C. Complete histological regression of Kaposi's sarcoma following treatment with protease inhibitors despite persistence of HHV-8 in lesions. Scand. J. Infect. Dis. 30, 613–615 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. De Milito, A. et al. Antiretroviral therapy with protease inhibitors in human immunodeficiency virus type 1- and human herpesvirus 8-coinfected patients. J. Med. Virol. 57, 140–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Torre-Cisneros, J. et al. Patterns of lymphotropic herpesvirus viraemia in HIV-infected patients with Kaposi's sarcoma treated with highly active antiretroviral therapy and liposomal daunorubicin. AIDS 14, 2215–2217 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Bourboulia, D. et al. Short- and long-term effects of highly active antiretroviral therapy on Kaposi sarcoma-associated herpesvirus immune responses and viraemia. AIDS 18, 485–493 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Cuzick, J., Terry, G., Ho, L., Hollingworth, T. & Anderson, M. Human papillomavirus type 16 in cervical smears as predictor of high-grade cervical intraepithelial neoplasia. Lancet 339, 959–960 (1992).

    Article  CAS  PubMed  Google Scholar 

  124. Remmink, A. J. et al. The presence of persistent high-risk HPV genotypes in dysplastic cervical lesions is associated with progressive disease: natural history up to 36 months. Int. J. Cancer 61, 306–311 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Stebbing, J. et al. The efficacy of ritonavir in the prevention of AIDS-related Kaposi's sarcoma. Int. J. Cancer 108, 631–633 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Gill, J. et al. Prospective study of the effects of antiretroviral therapy on Kaposi sarcoma: associated herpesvirus infection in patients with and without Kaposi sarcoma. J. Acquir. Immune. Defic. Syndr. 31, 384–390 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Ridolfo, A. L. et al. Is switching protease inhibitor-based effective antiretroviral therapy safe in patients with AIDS-associated Kaposi's sarcoma? AIDS 18, 1224–1226 (2004).

    Article  PubMed  Google Scholar 

  128. Bani-Sadr, F., Fournier, S. & Molina, J. M. Relapse of Kaposi's sarcoma in HIV-infected patients switching from a protease inhibitor to a non-nucleoside reverse transcriptase inhibitor-based highly active antiretroviral therapy regimen. AIDS 17, 1580–1581 (2003).

    Article  PubMed  Google Scholar 

  129. Gaedicke, S. et al. Antitumor effect of the human immunodeficiency virus protease inhibitor ritonavir: induction of tumor-cell apoptosis associated with perturbation of proteasomal proteolysis. Cancer Res. 62, 6901–6908 (2002). Showed that HIV-PIs can modulate proteasome activity to increase the half-life of WAF1 with no effects on proteasome-mediated degradation of the protein bulk.

    CAS  PubMed  Google Scholar 

  130. Pati, S. et al. Antitumorigenic effects of HIV protease inhibitor ritonavir: inhibition of Kaposi sarcoma. Blood 99, 3771–3779 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Ensoli, B. et al. AIDS-Kaposi's sarcoma-derived cells express cytokines with autocrine and paracrine growth effects. Science 243, 223–226 (1989).

    Article  CAS  PubMed  Google Scholar 

  132. Ensoli, B. et al. Block of AIDS-Kaposi's sarcoma (KS) cell growth, angiogenesis, and lesion formation in nude mice by antisense oligonucleotide targeting basic fibroblast growth factor. A novel strategy for the therapy of KS. J. Clin. Invest. 94, 1736–1746 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Weichold, F. F. et al. HIV-1 protease inhibitor ritonavir modulates susceptibility to apoptosis of uninfected T cells. J. Hum. Virol. 2, 261–269 (1999).

    CAS  PubMed  Google Scholar 

  134. Tovo, P. A. Highly active antiretroviral therapy inhibits cytokine production in HIV-uninfected subjects. AIDS 14, 743–744 (2000). Showed that PI–HAART inhibited, in two HIV-uninfected individuals, the production of inflammatory cytokines that are known to lead to the development of Kaposi's sarcoma.

    Article  CAS  PubMed  Google Scholar 

  135. Bissell, M. J. & Radisky, D. Putting tumours in context. Nature Rev. Cancer 1, 46–54 (2001).

    Article  CAS  Google Scholar 

  136. Chavan, S., Kodoth, S., Pahwa, R. & Pahwa, S. The HIV protease inhibitor Indinavir inhibits cell-cycle progression in vitro in lymphocytes of HIV-infected and uninfected individuals. Blood 98, 383–389 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Lu, W. & Andrieu, J. M. HIV protease inhibitors restore impaired T-cell proliferative response in vivo and in vitro: a viral-suppression-independent mechanism. Blood 96, 250–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Sloand, E. M. et al. Human immunodeficiency virus type 1 protease inhibitor modulates activation of peripheral blood CD4+ T cells and decreases their susceptibility to apoptosis in vitro and in vivo. Blood 94, 1021–1027 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Gruber, A., Wheat, J. C., Kuhen, K. L., Looney, D. J. & Wong-Staal, F. Differential effects of HIV-1 protease inhibitors on dendritic cell immunophenotype and function. J. Biol. Chem. 276, 47840–47843 (2001). Reported that HIV-PIs can affect maturation and function of professional antigen-presenting cells, with implications for tumour immunity.

    Article  CAS  PubMed  Google Scholar 

  140. Kelleher, A. D. et al. Effects of retroviral protease inhibitors on proteasome function and processing of HIV-derived MHC class I-restricted cytotoxic T lymphocyte epitopes. AIDS Res. Hum. Retroviruses 17, 1063–1066 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Sloand, E. M. et al. Protease inhibitors stimulate hematopoiesis and decrease apoptosis and ICE expression in CD34+ cells. Blood 96, 2735–2739 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Zhong, D. S. et al. HIV protease inhibitor ritonavir induces cytotoxicity of human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 22, 1560–1566 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Schmidtke, G. et al. How an inhibitor of the HIV-I protease modulates proteasome activity. J. Biol. Chem. 274, 35734–35740 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Hosseini, H. et al. Protection against experimental autoimmune encephalomyelitis by a proteasome modulator. J. Neuroimmunol. 118, 233–244 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Piccinini, M. et al. The human 26S proteasome is a target of antiretroviral agents. AIDS 16, 693–700 (2002).

    Article  PubMed  Google Scholar 

  146. Goldberg, A. L. & Rock, K. Not just research tools—proteasome inhibitors offer therapeutic promise. Nature Med. 8, 338–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Lenz, H. J. Clinical update: proteasome inhibitors in solid tumors. Cancer Treat. Rev. 29, 41–48 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 75, 773–785 (1994).

    Article  Google Scholar 

  149. Russo, S. M. et al. Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-κB. Int. J. Radiat. Oncol. Biol. Phys. 50, 183–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Schmidtke, G., Emch, S., Groettrup, M. & Holzhutter, H. G. Evidence for the existence of a non-catalytic modifier site of peptide hydrolysis by the 20S proteasome. J. Biol. Chem. 275, 22056–22063 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Adams, J. Proteasome inhibitors as new anticancer drugs. Curr. Opin. Oncol 14, 628–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Gaczynska, M., Rock, K. L. & Goldberg, A. L. γ-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365, 264–267 (1993).

    Article  CAS  PubMed  Google Scholar 

  153. Liang, J. S. et al. HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: a potential mechanism for protease inhibitor-induced hyperlipidemia 126. Nature Med. 7, 1327–1331 (2001). A paper providing compelling evidence that the cell proteasome in targeted by HIV-PIs in treated patients.

    Article  CAS  PubMed  Google Scholar 

  154. Ensoli, B. Employment of human immunodeficiency virus (HIV) protease inhibitors (HIV-PI) for utilizing them as drugs or realizing new anti-angiogenic, anti-tumor, anti-edemic, anti-inflammatory drugs, for the treatment of Kaposi's sarcoma, tumors and angioproliferative, inflammatory and autoimmune diseases in HIV infected or non infected subject. RM2001A000210 (2001).

  155. Bafetti, L. M., Young, T. N., Itoh, Y. & Stack, M. S. Intact vitronectin induces matrix metalloproteinase-2 and tissue inhibitor of metalloproteinases-2 expression and enhanced cellular invasion by melanoma cells. J. Biol. Chem. 273, 143–149 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Kheradmand, F., Werner, E., Tremble, P., Symons, M. & Werb, Z. Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science 280, 898–902 (1998).

    Article  CAS  PubMed  Google Scholar 

  157. Vaccher, E., di, G. G., Nasti, G., Juzbasic, S. & Tirelli, U. HAART is effective as anti-Kaposi's sarcoma therapy only after remission has been induced by chemotherapy. J. Acquir. Immune Defic. Syndr. 22, 407–408 (1999).

    Article  CAS  PubMed  Google Scholar 

  158. Lopez, D., Gil-Torregrosa, B. C., Bergmann, C. & Del, V. M. Sequential cleavage by metallopeptidases and proteasomes is involved in processing HIV-1 ENV epitope for endogenous MHC class I antigen presentation. J. Immunol. 164, 5070–5077 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Kobayashi, Y., Matsumoto, M., Kotani, M. & Makino, T. Possible involvement of matrix metalloproteinase-9 in Langerhans cell migration and maturation. J. Immunol. 163, 5989–5993 (1999).

    CAS  PubMed  Google Scholar 

  160. Gearing, A. J. et al. Processing of tumour necrosis factor-α precursor by metalloproteinases. Nature 370, 555–557 (1994).

    Article  CAS  PubMed  Google Scholar 

  161. Ito, A. et al. Degradation of interleukin 1β by matrix metalloproteinases. J. Biol. Chem. 271, 14657–14660 (1996).

    Article  CAS  PubMed  Google Scholar 

  162. McQuibban, G. A. et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289, 1202–1206 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Schonbeck, U., Mach, F. & Libby, P. Generation of biologically active IL-1β by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1β processing. J. Immunol. 161, 3340–3346 (1998).

    CAS  PubMed  Google Scholar 

  164. Van den Steen, P. E., Proost, P., Wuyts, A., Van, D. J. & Opdenakker, G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-α and leaves RANTES and MCP-2 intact. Blood 96, 2673–2681 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature Med. 7, 1118–1122 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 14, 163–176 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Sheu, B. C. et al. A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res. 61, 237–242 (2001).

    CAS  PubMed  Google Scholar 

  168. Martignetti, J. A. et al. Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nature Genet. 28, 261–265 (2001). Shows that genetic loss of MMP2 function results in bone disorders. These defects also occur in HAART-treated patients.

    Article  CAS  PubMed  Google Scholar 

  169. Mora, S. et al. Bone mineral loss through increased bone turnover in HIV-infected children treated with highly active antiretroviral therapy. AIDS 15, 1823–1829 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Tebas, P. et al. Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. AIDS 14, F63–F67 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Ferrara, N., Hillan, K. J., Gerber, H. P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Rev. Drug Discov. 3, 391–400 (2004).

    Article  CAS  Google Scholar 

  172. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Arun, B. & Goss, P. The role of COX-2 inhibition in breast cancer treatment and prevention. Semin. Oncol. 31, 22–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Tirelli, U., Bernardi, D., Spina, M. & Vaccher, E. AIDS-related tumors: integrating antiviral and anticancer therapy. Crit. Rev. Oncol. Hematol. 41, 299–315 (2002).

    Article  PubMed  Google Scholar 

  175. Ratner, L. et al. Chemotherapy for human immunodeficiency virus-associated non-Hodgkin's lymphoma in combination with highly active antiretroviral therapy. J. Clin. Oncol. 19, 2171–2178 (2001).

    Article  CAS  PubMed  Google Scholar 

  176. Nannan, P. V. et al. Paclitaxel in the treatment of human immunodeficiency virus 1-associated Kaposi's sarcoma—drug-drug interactions with protease inhibitors and a nonnucleoside reverse transcriptase inhibitor: a case report study. Cancer Chemother. Pharmacol. 43, 516–519 (1999).

    Article  Google Scholar 

  177. Vaccher, E. et al. Concomitant cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy plus highly active antiretroviral therapy in patients with human immunodeficiency virus-related, non-Hodgkin lymphoma. Cancer 91, 155–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Spina, M. et al. Stanford V regimen and concomitant HAART in 59 patients with Hodgkin disease and HIV infection. Blood 100, 1984–1988 (2002).

    Article  CAS  PubMed  Google Scholar 

  179. Mastroianni, C. M. et al. Ex vivo and in vitro effect of human immunodeficiency virus protease inhibitors on neutrophil apoptosis. J. Infect. Dis. 182, 1536–1539 (2000).

    Article  CAS  PubMed  Google Scholar 

  180. Isgro, A. et al. Recovery of hematopoietic activity in bone marrow from human immunodeficiency virus type 1-infected patients during highly active antiretroviral therapy. AIDS Res. Hum. Retroviruses 16, 1471–1479 (2000).

    Article  CAS  PubMed  Google Scholar 

  181. Adams, G. B., Pym, A. S., Poznansky, M. C., McClure, M. O. & Weber, J. N. The in vivo effects of combination antiretroviral drug therapy on peripheral blood CD34+ cell colony-forming units from HIV type 1-infected patients. AIDS Res. Hum. Retroviruses 15, 551–559 (1999).

    Article  CAS  PubMed  Google Scholar 

  182. Olson, D. P., Scadden, D. T., D'Aquila, R. T. & De Pasquale, M. P. The protease inhibitor ritonavir inhibits the functional activity of the multidrug resistance related-protein 1 (MRP-1). AIDS 16, 1743–1747 (2002).

    Article  CAS  PubMed  Google Scholar 

  183. Ikebe, T. et al. Involvement of proteasomes in migration and matrix metalloproteinase-9 production of oral squamous cell carcinoma. Int. J. Cancer 77, 578–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  184. Li, J. et al. PR39, a peptide regulator of angiogenesis. Nature Med. 6, 49–55 (2000).

    Article  CAS  PubMed  Google Scholar 

  185. Mezquita, J., Mezquita, B., Pau, M. & Mezquita, C. Down-regulation of Flt-1 gene expression by the proteasome inhibitor MG262. J. Cell. Biochem. 89, 1138–1147 (2003).

    Article  CAS  PubMed  Google Scholar 

  186. Oikawa, T. et al. The proteasome is involved in angiogenesis. Biochem. Biophys. Res Commun. 246, 243–248 (1998).

    Article  CAS  PubMed  Google Scholar 

  187. Cocchi, F. et al. The V3 domain of the HIV-1 gp120 envelope glycoprotein is critical for chemokine-mediated blockade of infection. Nature Med. 2, 1244–1247 (1996).

    Article  CAS  PubMed  Google Scholar 

  188. Douek, D. C. et al. Evidence for increased T cell turnover and decreased thymic output in HIV infection. J. Immunol. 167, 6663–6668 (2001).

    Article  CAS  PubMed  Google Scholar 

  189. Gallagher, B., Wang, Z., Schymura, M. J., Kahn, A. & Fordyce, E. J. Cancer incidence in New York State acquired immunodeficiency syndrome patients. Am. J. Epidemiol. 154, 544–556 (2001).

    Article  CAS  PubMed  Google Scholar 

  190. Bower, M. et al. HIV-related lung cancer in the era of highly active antiretroviral therapy. AIDS 17, 371–375 (2003).

    Article  PubMed  Google Scholar 

  191. Powles, T. et al. Multicenter study of human immunodeficiency virus-related germ cell tumors. J. Clin. Oncol. 21, 1922–1927 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Herida, M. et al. Incidence of non-AIDS-defining cancers before and during the highly active antiretroviral therapy era in a cohort of human immunodeficiency virus-infected patients. J. Clin. Oncol. 21, 3447–3453 (2003).

    Article  PubMed  Google Scholar 

  193. Powles, T. et al. Outcome of patients with HIV-related germ cell tumours: a case-control study. Br. J. Cancer 90, 1526–1530 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Sgadari, C., Monini, P., Barillari, G. & Ensoli, B. Use of HIV protease inhibitors to block Kaposi's sarcoma and tumour growth. Lancet Oncol. 4, 537–547 (2003).

    Article  CAS  PubMed  Google Scholar 

  195. Phenix, B. N., Lum, J. J., Nie, Z., Sanchez-Dardon, J. & Badley, A. D. Antiapoptotic mechanism of HIV protease inhibitors: preventing mitochondrial transmembrane potential loss. Blood 98, 1078–1085 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to H. Kleinman for helpful discussion and to Emanuela Vaccher for discussion on the potential clinical use of HIV-PIs in patients with cancer. We thank A. Carinci, S. Ceccarelli and F. M. Regini for editorial assistance. The work by the authors was supported by grants from Associazione Italiana per la Ricerca sul Cancro (AIRC) and from the Italian Ministry of Health (Ricerca Finalizzata) to B. E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Ensoli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

bFGF

COX2

ICAM1

IFNγ

IL-1β

IL-2

IL-2 receptor-α

IL-6

IL-8

MMP2

MMP3

MMP7

monocyte chemoattractant protein 3

MT1-MMP

selectin E

TNFα

TRAIL

transforming growth factor-β

VCAM1

VEGF

WAF1

National Cancer Institute

cervical cancer

non-Hodgkin's lymphomas

OMIM

Kaposi's sarcoma

FURTHER INFORMATION

European Organisation for Research and Treatment of Cancer

GenBank

HIV/AIDS Treatment Information Service

Medscape Druginfo

Southwest Oncology Group

Glossary

NAIVE AND MEMORY T-CELL REPERTOIRE

Mature T cells that have not yet encountered antigens are called naive T cells. Following antigen recognition, naive T cells become activated, proliferate and some differentiate into memory T cells. Both the naive and memory T-cell repertoires are progressively shrunk in HIV-infected patients.

EPIDERMODYSPLASIA VERRUCIFORMIS

A genetic disease characterized by increased susceptibility to human papillomaviruses.

MULTICENTRIC CASTLEMAN'S DISEASE

Lymphoproliferative disorder characterized by reactive lymph nodes with expanded germinal centres and B-cell proliferation. In HIV-infected individuals, the plasma-cell variant is the predominant form, which, in this setting, is invariably infected by KSHV.

HODGKIN'S DISEASE

A heterogeneous lymphoma entity originating from germinal-centre or post-germinal-centre B cells. The classical form has a post-germinal-centre phenotype and is the predominant form in HIV-infected individuals.

MATRIX METALLOPROTEINASES (MMPS)

Enzymes that degrade the extracellular matrix and are required for tumour-cell invasion of basement membranes and migration in interstitial tissue. MMPs are involved in angiogenesis, wound healing, tumour invasion, inflammation and all processes requiring tissue remodelling.

HELPER T CELLS

T lymphocytes that express the surface molecules CD3 and CD4, and recognize antigen peptides presented by MCH-class-II molecules. Following antigen recognition, these cells produce cytokines that activate B-cells, macrophages and granulocytes, and that induce differentiation of cytotoxic T lymphocytes into effector cells.

IMMUNOBLASTIC LYMPHOMA

A subtype of NHLs that belongs to the group of the diffused large-cell lymphomas, accounting for about 25% of HIV-associated lymphomas. It is associated with EBV infection and expression of LMP1.

PRIMARY-NERVOUS-SYSTEM LYMPHOMA

A NHL subtype, usually with immunoblastic features, that arises in the central nervous system. This subtype is invariably associated with EBV infection, and expresses the viral oncoprotein LMP1.

CENTROBLASTIC DIFFUSE LARGE-CELL LYMPHOMA

A systemic subtype of NHL belonging to the group of the diffused large-cell lymphomas, accounting for about 10% of HIV-associated lymphomas. About 30% of these lymphomas are infected with EBV but do not express the viral oncoprotein LMP1.

BURKITT'S LYMPHOMA

A systemic subtype of NHL that accounts for about 30% of HIV-associated lymphomas. It is characterized by c-MYC alteration due to chromosomal translocation, and by p53 inactivation. About 30% of cases are associated with EBV infection, and tumour cells do not express the viral oncoprotein LMP1.

HIV-1 Tat PROTEIN

A viral regulatory protein that induces expression of viral genes.

TH1-TYPE PRO-INFLAMMATORY CYTOKINES

Cytokines produced by helper T cells of the TH1 subset. These cytokines activate T cells and macrophages, and stimulate cell-mediated immunity. Most of these cytokines also have inflammatory activity, activate vessels and recruit immune cells at sites of tissue damage.

CLASSIC, AFRICAN AND POST-TRANSPLANT KAPOSI'S SARCOMA

Three epidemiological forms of the disease that share the same histopathological traits as HIV-associated Kaposi's sarcoma (AIDS-KS), although they are less aggressive, and are not associated with HIV infection. The classic form is prevalent in elderly people of Mediterranean origin, the African form is endemic in central Africa, and post-transplant Kaposi's sarcoma occurs in transplant patients receiving immune-suppressive therapy.

T-CELL PRIMING

Occurs following the first encounter of naive T cells with antigenic peptides on antigen-presenting cells, and results in the induction of a primary immune response.

CYTOTOXIC T LYMPHOCYTES

T cells that express the surface molecules CD3 and CD8, and recognize antigen peptides presented by MCH-class-I molecules. Following antigen recognition and stimulation by T helper cells, activation of these cells allows them to kill cancer cells and cells infected with intracellular pathogens such as viruses.

IMMUNOPROTEASOME

A form of proteasome that is present in professional antigen-presenting cells and is induced in other cell types by inflammation. The immunoproteasome produces epitope peptides for presentation to cytotoxic T cells.

PROFESSIONAL ANTIGEN-PRESENTING CELLS

Cells that internalize and process antigens for presentation to immune cells by MHC-class-I and -II molecules. Include macrophages, B cells and dendritic cells.

OSTEOPAENIA AND OSTEOPOROSIS

Bone undergoes continuous remodelling through resorption and formation of the calcified matrix. Osteopaenia (bone thinning) and osteoporosis (bone softening) are characterized by bone demineralization, leading to low bone mineral density or content.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monini, P., Sgadari, C., Toschi, E. et al. Antitumour effects of antiretroviral therapy. Nat Rev Cancer 4, 861–875 (2004). https://doi.org/10.1038/nrc1479

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrc1479

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing