Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Interfering with disease: a progress report on siRNA-based therapeutics

Abstract

RNA interference (RNAi) quietly crept into biological research in the 1990s when unexpected gene-silencing phenomena in plants and flatworms first perplexed scientists. Following the demonstration of RNAi in mammalian cells in 2001, it was quickly realized that this highly specific mechanism of sequence-specific gene silencing might be harnessed to develop a new class of drugs that interfere with disease-causing or disease-promoting genes. Here we discuss the considerations that go into developing RNAi-based therapeutics starting from in vitro lead design and identification, to in vivo pre-clinical drug delivery and testing. We conclude by reviewing the latest clinical experience with RNAi therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of RNA interference in mammalian cells.
Figure 2: Turning siRNA into drugs.
Figure 3: Delivery of small interfering RNAs.

Similar content being viewed by others

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    CAS  PubMed  Google Scholar 

  3. Song, E. et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nature Med. 9, 347–351 (2003).

    CAS  PubMed  Google Scholar 

  4. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    CAS  PubMed  Google Scholar 

  5. Kim, D. H. & Rossi, J. J. Strategies for silencing human disease using RNA interference. Nature Rev. Genet. 8, 173–184 (2007).

    CAS  PubMed  Google Scholar 

  6. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004).

    CAS  PubMed  Google Scholar 

  7. Matranga, C. et al. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).

    CAS  PubMed  Google Scholar 

  8. Liu, J. et al. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature Cell Biol. 7, 719–723 (2005).

    CAS  PubMed  Google Scholar 

  9. Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).

    CAS  PubMed  Google Scholar 

  10. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    CAS  PubMed  Google Scholar 

  11. Pei, Y. & Tuschl, T. On the art of identifying effective and specific siRNAs. Nature Methods 3, 670–676 (2006).

    CAS  PubMed  Google Scholar 

  12. Reynolds, A. et al. Rational siRNA design for RNA interference. Nature Biotechnol. 22, 326–330 (2004).

    CAS  Google Scholar 

  13. Kim, D. H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nature Biotechnol. 23, 222–226 (2005).

    CAS  Google Scholar 

  14. Reynolds, A. et al. Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 6, 988–993 (2006).

    Google Scholar 

  15. Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    CAS  PubMed  Google Scholar 

  16. Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    CAS  PubMed  Google Scholar 

  17. Aza-Blanc, P. et al. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol. Cell 12, 627–637 (2003).

    CAS  PubMed  Google Scholar 

  18. Schwarz, D. S. et al. Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genetics 2, 1307–1318 (2006).

    CAS  Google Scholar 

  19. Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotech. 21, 635–637 (2003).

    CAS  Google Scholar 

  20. Lin, X. et al. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res. 33, 4527–4535 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Qiu, S., Adema, C. M. & Lane, T. A computational study of off-target effects of RNA interference. Nucleic Acids Res. 33, 1834–1847 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jackson, A. L. et al. Widespread siRNA off-target transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Birmingham, A. et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nature Methods 3, 199–204 (2006).

    CAS  PubMed  Google Scholar 

  24. Jackson, A. L. et al. Position-specific chemical modification of siRNAs reduces off-target transcript silencing. RNA 12, 1197–1205 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fedorov, Y. et al. Off-target effects by siRNA can induce toxic phenotype. RNA 12, 1188–1196 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schlee, M. et al. SiRNA and isRNA: two edges of one sword. Mol. Ther. 14, 463–470 (2006).

    CAS  PubMed  Google Scholar 

  27. Hornung, V. et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Med. 11, 263–270 (2005).

    CAS  PubMed  Google Scholar 

  28. Judge, A. D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nature Biotechnol. 23, 457–462 (2005).

    CAS  Google Scholar 

  29. Judge, A. D. et al. Design of non-inflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13, 494–505 (2006).

    CAS  PubMed  Google Scholar 

  30. Layzer, J. M. et al. In vivo activity of nuclease-resistant siRNAs. RNA 10, 766–771 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Choung, S. et al. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem. Biophys. Res. Commun 342, 919–927 (2006).

    CAS  PubMed  Google Scholar 

  32. Allerson, C. R. et al. Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J. Med. Chem. 48, 901–904 (2005).

    CAS  PubMed  Google Scholar 

  33. de Fougerolles, A. R. et al. RNA interference in vivo: toward synthetic small inhibitory RNA-based therapeutics. Methods Enzymol. 392, 278–296 (2005).

    CAS  PubMed  Google Scholar 

  34. Morrissey, D. V. et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41, 1349–1356 (2005).

    CAS  PubMed  Google Scholar 

  35. Bartlett, D. W. & Davis, M. E. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res. 34, 322–333 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Raemdonck, K. et al. In situ analysis of single-stranded and duplex siRNA integrity in living cells. Biochemistry 45, 10614–10623 (2006).

    CAS  PubMed  Google Scholar 

  37. Fedorov, Y. et al. Different delivery methods-different expression profiles. Nature Methods 2, 241 (2005).

    CAS  PubMed  Google Scholar 

  38. Aigner, A. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J. Biotechnology 124, 12–25 (2006).

    CAS  Google Scholar 

  39. Bumcrot, D. et al. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chem. Biol. 2, 711–719 (2006).

    CAS  Google Scholar 

  40. Reich, S. J. et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol. Vision 9, 210–216 (2003).

    CAS  Google Scholar 

  41. Tolentino, M. J. et al. Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization. Retina 24, 132–138 & 660–661 (2004).

    PubMed  Google Scholar 

  42. Shen, J. et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther. 13, 225–234 (2006).

    CAS  PubMed  Google Scholar 

  43. Nakamura, H. et al. RNA interference targeting transforming growth factor-β type II receptor suppresses ocular inflammation and fibrosis. Mol. Vision 10, 703–711 (2004).

    CAS  Google Scholar 

  44. Bitko, V. et al. Inhibition of respiratory viruses by nasally administered siRNA. Nature Med. 11, 50–55 (2005).

    CAS  PubMed  Google Scholar 

  45. Li, B. J. et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nature Med. 11, 944–951 (2005).

    CAS  PubMed  Google Scholar 

  46. Zhang, X. et al. Small interfering RNA targeting heme oxygenase-1 enhances ischemia-reperfusion-induced lung apoptosis. J. Biol. Chem. 279, 10677–10684 (2004).

    CAS  PubMed  Google Scholar 

  47. Lomas-Neira, J. L. et al.. In vivo gene silencing (with siRNA) of pulmonary expression of MIP-2 versus KC results in divergent effects on hemorrhage-induced, neutrophil-mediated septic acute lung injury. J. Leukoc. Biol. 77, 846–853 (2005).

    CAS  PubMed  Google Scholar 

  48. Perl, M. et al. Silencing of Fas, but not caspase-8, in lung epithelial cells ameliorates pulmonary apoptosis, inflammation and neutrophil influx after hemorrhagic shock and sepsis. Am. J. Pathol. 167, 1545–1559 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bhandari, V. et al. Hypoxia causes angiopoietin-2-mediated acute lung injury and necrotic cell death. Nature Med. 12, 1286–1292 (2006).

    CAS  PubMed  Google Scholar 

  50. Matsuyama, W. et al. Suppression of discoidin domain receptor 1 by RNA interference attenuates lung inflammation. J. Immunol. 176, 1928–1936 (2006).

    CAS  PubMed  Google Scholar 

  51. Makimura, H. et al. Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intake. BMC Neurosci. 3, 18 (2002).

    PubMed  PubMed Central  Google Scholar 

  52. Thakker, D. R. et al. Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference. Proc. Natl Acad. Sci. USA 101, 17270–17275 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Thakker, D. R. et al. siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain. Mol. Psychiatry 10, 782–789 (2005).

    CAS  PubMed  Google Scholar 

  54. Dorn, G. et al. SiRNA relieves chronic neuropathic pain. Nucleic Acids Res. 32, e49 (2004).

    PubMed  PubMed Central  Google Scholar 

  55. Luo, M. C. et al. An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol. Pain 1, 29 (2005).

    PubMed  PubMed Central  Google Scholar 

  56. Tan, P. H. et al. Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat. Gene Ther. 12, 59–66 (2005).

    CAS  PubMed  Google Scholar 

  57. Kumar, P. et al. A single siRNA suppresses fatal encephalitis induced by two different flaviviruses. PLoS Med. 3, 505–514 (2006).

    CAS  Google Scholar 

  58. Biessen, E. A. et al. Targeted delivery of oligodeoxynucleotides to parenchymal liver cells in vivo. Biochem. J. 340, 783–792 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    CAS  PubMed  Google Scholar 

  60. Muratovska, A. & Eccles, M. R. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Letters 558, 63–68 (2004).

    CAS  PubMed  Google Scholar 

  61. Hu-Lieskovan, S. et al. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res. 65, 8984–8992 (2005).

    CAS  PubMed  Google Scholar 

  62. Kim, S. H. et al. Target-specific gene silencing by siRNA plasmid DNA complexed with folate-modified poly(ethylenimine). J. Controlled Release 104, 223–232 (2005).

    CAS  Google Scholar 

  63. Schiffelers, R. M. et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32, e149 (2004).

    PubMed  PubMed Central  Google Scholar 

  64. McNamara, J. O. et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nature Biotechnol. 24, 1005–1015 (2006).

    CAS  Google Scholar 

  65. Chu, T. C. et al. Aptamer mediated siRNA delivery. Nucleic Acids Res. 34, e73 (2006).

    PubMed  PubMed Central  Google Scholar 

  66. Nimjee, S. M., Rusconi, C. P. & Sullenger B.A. Aptamers: an emerging class of therapeutics. Annu. Rev. Med. 56, 555–583 (2005).

    CAS  PubMed  Google Scholar 

  67. Torchilin, V. P. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu. Rev. Biomed. Eng. 8, 343–375 (2006).

    CAS  PubMed  Google Scholar 

  68. Li, W. Szoka F. C. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res. Adv. Drug Deliv. Rev. 24, 438–449 (2007).

    Google Scholar 

  69. Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).

    CAS  PubMed  Google Scholar 

  70. Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotechnol. 23, 1002–1007 (2005).

    CAS  Google Scholar 

  71. Geisbert, T. W. et al. Postexposure protection of guinea pigs against lethal ebola virus challenge is conferred by RNA interference. J. Infect. Dis. 193, 1650–1657 (2006).

    CAS  PubMed  Google Scholar 

  72. Khoury, M. et al. Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor-α in experimental arthritis. Arthritis & Rheumatism 54, 1867–1877 (2006).

    CAS  Google Scholar 

  73. Miyawaki-Shimizu, K. et al. SiRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L405–L413 (2006).

    CAS  PubMed  Google Scholar 

  74. Niu, X. Y. et al. Inhibition of HPV 16 E6 oncogene expression by RNA interference in vitro and in vivo. Int. J. Gynecol. Cancer 16, 743–751 (2006).

    PubMed  Google Scholar 

  75. Palliser, D. et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439, 89–94 (2006).

    CAS  PubMed  Google Scholar 

  76. Zhang, Y. et al. Engineering mucosal RNA interference in vivo. Mol. Ther. 4, 336–342 (2006).

    CAS  Google Scholar 

  77. Juliano, R. L. Peptide-oligonucleotide conjugates for the delivery of antisense and siRNA. Curr. Opin. Mol. Ther. 7, 132–136 (2005).

    CAS  PubMed  Google Scholar 

  78. Merdan, T. et al. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug. Deliv. Rev. 54, 715–758 (2002).

    CAS  PubMed  Google Scholar 

  79. Li, W, Nicol, F. & Szoka F. C. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv. Drug Deliv. Rev. 56, 967–985 (2004).

    CAS  PubMed  Google Scholar 

  80. Oliveira, S. et al. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int. J. Pharm. 2007 331, 211–214 (2007).

    CAS  PubMed  Google Scholar 

  81. Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92, 7297–7301 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ge, Q. et al. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl Acad. Sci. USA 101, 8676–8681 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Grzelinski, M. et al. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum. Gene Ther. 17, 751–766 (2006).

    CAS  PubMed  Google Scholar 

  84. Urban-Klein, B. et al. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12, 461–466 (2005).

    CAS  PubMed  Google Scholar 

  85. Thomas, M. et al. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl Acad. Sci. USA 102, 5679–5684 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Grayson, A. C. et al. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm. Res. 23, 1868–1876 (2006).

    PubMed  Google Scholar 

  87. Werth, S. et al. A low molecular weight fraction of polyethylenimine (PEI) displays increased transfection efficiency of DNA and siRNA in fresh or lyophilized complexes. J. Controlled Release 112, 257–270 (2006).

    CAS  Google Scholar 

  88. Read, M. L. et al. A versatile reducible polycation-based system for efficient delivery of a broad range of nucleic acids. Nucleic Acids Res. 33, e86 (2005).

    PubMed  PubMed Central  Google Scholar 

  89. Howard, K. A. et al. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther. 14, 476–484 (2006).

    CAS  PubMed  Google Scholar 

  90. Pille, J. Y. et al. Intravenous delivery of anti-rhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Human Gene Ther. 17, 1019–1026 (2006).

    CAS  Google Scholar 

  91. Heidel, J. D. et al. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl Acad. Sci. USA 104, 5715–5721 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Takei, Y. et al. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res. 64, 3365–3370 (2004).

    CAS  PubMed  Google Scholar 

  93. Takeshita, F. & Ochiya, T. Therapeutic potential of RNA interference against cancer. Cancer Sci. 97, 689–696 (2006).

    CAS  PubMed  Google Scholar 

  94. Khan, A. et al. Sustained polymeric delivery of gene silencing antisense ODNs, siRNA, DNAzymes and ribozymes: in vitro and in vivo studies. J. Drug Target 12, 393–404 (2004).

    CAS  PubMed  Google Scholar 

  95. Kang, H. et al. Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides. Pharm. Res. 22, 2099–2106 (2005).

    CAS  PubMed  Google Scholar 

  96. Zatsepin, T. S. et al. Conjugates of oligonucleotides and analogues with cell penetrating peptides as gene silencing agents. Curr. Pharm. Des. 11, 3639–3654 (2005).

    CAS  PubMed  Google Scholar 

  97. Simeoni, F. et al. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 31, 2717–2724 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Davidson, T. J. et al. Highly efficient small interfering RNA delivery to primary mammalian neurons induces micro-RNA-like effects before mRNA degragation. J. Neurosci. 24, 10040–10046 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim, W. J. et al. Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol. Ther. 14, 343–350 (2006).

    PubMed  Google Scholar 

  100. Longmuir, K. J. et al. Effective targeting of liposomes to liver and hepatocytes in vivo by incorporation of a Plasmodium amino acid sequence. Pharm. Res. 23, 759–769 (2006).

    CAS  PubMed  Google Scholar 

  101. Song, E. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature Biotechnol. 23, 709–717 (2005).

    CAS  Google Scholar 

  102. Peer, D. et al. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen 1. Proc. Natl Acad. Sci. USA 104, 4095–4100 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Jabs, D. A. et al. Fomivirsen for the treatment of cytomegalovirus retinitis. Amer. J. Ophthalmol. 133, 552–556 (2002).

    CAS  PubMed  Google Scholar 

  104. Gragoudas, E. S. et al. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 351, 2805–2816 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank their collaborators and colleagues for useful discussions. J.L. was supported by NIH grants AI056900 and AI070302.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonin de Fougerolles or Judy Lieberman.

Ethics declarations

Competing interests

Antonin de Fougerolles, Hans-Peter Vornlocher and John Maraganore are employees of Alnylam Pharmaceuticals and have financial interests in Alnylam. Judy Lieberman is a member of the Scientific Advisory Board of Alnylam.

Related links

Related links

DATABASES

OMIM

AMD

FURTHER INFORMATION

Alnylam Pharmaceuticals

Lieberman Lab

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Fougerolles, A., Vornlocher, HP., Maraganore, J. et al. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6, 443–453 (2007). https://doi.org/10.1038/nrd2310

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrd2310

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing