Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders

Key Points

  • Positive and negative allosteric modulators (PAMs and NAMs) have now been identified for members of each major subfamily of G protein-coupled receptors (GPCRs). Multiple allosteric modulators have been optimized to have drug-like properties, and several allosteric modulators of class A and class C GPCRs are now advancing in preclinical and clinical development.

  • The crystal structures of GPCRs bound to allosteric modulators are providing important new insights into the structural determinants of allosteric-modulator action. This new structural information reveals interesting similarities between the binding pocket for allosteric modulators of class C GPCRs and the orthosteric binding pocket of class A GPCRs.

  • Potential advantages of allosteric modulators that were theoretical are now gaining direct experimental support. For instance, there are now clear examples of the major advantages of using GPCR PAMs as opposed to orthosteric agonists in maintaining spatial and temporal aspects of GPCR signalling.

  • Stimulus bias can complicate the optimization of GPCR allosteric modulators for disorders of the central nervous system, in which the most appropriate signalling pathways are not known. However, there are also examples where the optimization of allosteric modulators that confer stimulus bias to GPCR signalling may be important for developing optimal clinical-development candidates.

  • Examples are now beginning to emerge in which allosteric modulators can differentiate between homomeric and heteromeric forms of class C GPCRs. Allosteric modulators that can differentiate between homomeric and heteromeric GPCRs can have highly specific effects in certain brain circuits.

  • After a decade of focused efforts on the optimization of allosteric modulators of GPCRs as drug candidates, principles are now emerging that are important for the successful lead optimization of candidate allosteric modulators.

Abstract

Novel allosteric modulators of G protein-coupled receptors (GPCRs) are providing fundamental advances in the development of GPCR ligands with high subtype selectivity and novel modes of efficacy that have not been possible with traditional approaches. As new allosteric modulators are advancing as drug candidates, we are developing an increased understanding of the major advantages and broad range of activities that can be achieved with these agents through selective modulation of specific signalling pathways, differential effects on GPCR homodimers versus heterodimers, and other properties. This understanding creates exciting opportunities, as well as unique challenges, in the optimization of novel therapeutic agents for disorders of the central nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of GPCRs in complex with allosteric modulators.
Figure 2: Heterointeractions between mGluR subunits differentially alter the pharmacology of allosteric modulators.
Figure 3: 'Molecular switches' within GPCR allosteric ligands.
Figure 4: 'Flat' SARs.
Figure 5: An approach for the chemical optimization of allosteric modulators.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Chalmers, D. T. & Behan, D. P. The use of constitutively active GPCRs in drug discovery and functional genomics. Nature Rev. Drug Discov. 1, 599–608 (2002).

    CAS  Google Scholar 

  2. Lagerström, M. C. & Schiöth, H. B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nature Rev. Drug Discov. 7, 339–357 (2008).

    Article  Google Scholar 

  3. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nature Rev. Drug Discov. 5, 993–996 (2006).

    CAS  Google Scholar 

  4. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov. 3, 711–715 (2004).

    CAS  Google Scholar 

  5. Christopoulos, A. & Kenakin, T. G protein-coupled receptor allosterism and complexing. Pharmacol. Rev. 54, 323–374 (2002).

    CAS  PubMed  Google Scholar 

  6. Changeux, J. P. The concept of allosteric interaction and its consequences for the chemistry of the brain. J. Biol. Chem. 288, 26969–26986 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Möhler, H., Fritschy, J. M. & Rudolph, U. A new benzodiazepine pharmacology. J. Pharmacol. Exp. Ther. 300, 2–8 (2002).

    PubMed  Google Scholar 

  8. Lindberg, J. S. et al. Cinacalcet HCl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis: a randomized, double-blind, multicenter study. J. Am. Soc. Nephrol. 16, 800–807 (2005).

    CAS  PubMed  Google Scholar 

  9. Harrington, P. E. & Fotsch, C. Calcium sensing receptor activators: calcimimetics. Curr. Med. Chem. 14, 3027–3034 (2007).

    CAS  PubMed  Google Scholar 

  10. Dorr, P. et al. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother. 49, 4721–4732 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Emmitte, K. A. mGlu5 negative allosteric modulators: a patent review (2010–2012). Exp. Opin. Ther. Pat. 23, 393–408 (2013).

    CAS  Google Scholar 

  12. Rocher, J. P. et al. mGluR5 negative allosteric modulators overview: a medicinal chemistry approach towards a series of novel therapeutic agents. Curr. Top. Med. Chem. 11, 680–695 (2011).

    CAS  PubMed  Google Scholar 

  13. Lavreysen, H. et al. Pharmacological characterization of JNJ-40068782, a new potent, selective, and systemically active positive allosteric modulator of the mGlu2 receptor and its radioligand [3H]JNJ-40068782. J. Pharmacol. Exp. Ther. 346, 514–527 (2013).

    CAS  PubMed  Google Scholar 

  14. Hopkins, C. R. Is there a path forward for mGlu2 positive allosteric modulators for the treatment of schizophrenia? ACS Chem. Neurosci. 4, 211–213 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Macdonald, G. J. & Lindsley, C. W. A unique industrial–academic collaboration towards the next generation of schizophrenia therapeutics. Curr. Top. Med. Chem. 14, 304–312 (2014).

    CAS  PubMed  Google Scholar 

  16. Lindsley, C. W. & Hopkins, C. R. Metabotropic glutamate receptor 4 (mGlu4)-positive allosteric modulators for the treatment of Parkinson's disease: historical perspective and review of the patent literature. Expert Opin. Ther. Pat. 22, 461–481 (2012).

    CAS  PubMed  Google Scholar 

  17. Foster, D. J., Jones, C. K. & Conn, P. J. Emerging approaches for treatment of schizophrenia: modulation of cholinergic signaling. Discov. Med. 14, 413–420 (2012).

    PubMed  PubMed Central  Google Scholar 

  18. Wootten, D., Christopoulos, A. & Sexton, P. M. Emerging paradigms in GPCR allostery: implications for drug discovery. Nature Rev. Drug Discov. 12, 630–644 (2013).

    CAS  Google Scholar 

  19. Conn, P. J., Christopoulos, A. & Lindsley, C. W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nature Rev. Drug Discov. 8, 41–54 (2009).

    CAS  Google Scholar 

  20. O'Brien, J. A. et al. A family of highly selective allosteric modulators of the metabotropic glutamate receptor subtype 5. Mol. Pharmacol. 64, 731–740 (2003).

    CAS  PubMed  Google Scholar 

  21. Rodriguez, A. L. et al. A close structural analog of 2-methyl-6-(phenylethynyl)-pyridine acts as a neutral allosteric site ligand on metabotropic glutamate receptor subtype 5 and blocks the effects of multiple allosteric modulators. Mol. Pharmacol. 68, 1793–1802 (2005).

    CAS  PubMed  Google Scholar 

  22. Canals, M., Sexton, P. M. & Christopoulos, A. Allostery in GPCRs: 'MWC' revisited. Trends Biochem. Sci. 36, 663–672 (2011).

    CAS  PubMed  Google Scholar 

  23. Gregory, K. J., Sexton, P. M. & Christopoulos, A. Overview of receptor allosterism. Curr. Protoc. Pharmacol. Ch. 1, Unit 1.21 (2010).

  24. Leach, K. Sexton, P. M. & Christopoulos, A. Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends Pharmacol. Sci. 28, 382–389 (2007).

    CAS  PubMed  Google Scholar 

  25. May, L. T. et al. Allosteric modulation of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 47, 1–51 (2007).

    CAS  PubMed  Google Scholar 

  26. Gregory, K. J. et al. Investigating metabotropic glutamate receptor 5 allosteric modulator cooperativity, affinity, and agonism: enriching structure-function studies and structure-activity relationships. Mol. Pharmacol. 82, 860–875 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Niswender, C. M. et al. Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4. Mol. Pharmacol. 74, 1345–1358 (2008).

    CAS  PubMed  Google Scholar 

  28. Noetzel, M. J. et al. Functional impact of allosteric agonist activity of selective positive allosteric modulators of metabotropic glutamate receptor subtype 5 in regulating central nervous system function. Mol. Pharmacol. 81, 120–133 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rook, J. M. et al. Unique signaling profiles of positive allosteric modulators of metabotropic glutamate receptor subtype 5 determine differences in in vivo activity. Biol. Psychiatry 73, 501–509 (2013).

    CAS  PubMed  Google Scholar 

  30. Knudsen, L. B. et al. Functional importance of GLP-1 receptor species and expression levels in cell lines. Regul. Pept. 175, 21–29 (2012).

    CAS  PubMed  Google Scholar 

  31. Ayala, J. E. et al. mGluR5 positive allosteric modulators facilitate both hippocampal LTP and LTD and enhance spatial learning. Neuropsychopharmacology 34, 2057–2071 (2009).

    CAS  PubMed  Google Scholar 

  32. Spalding, T. A. et al. Discovery of an ectopic activation site on the M1 muscarinic receptor. Mol. Pharmacol. 61, 1297–1302 (2002).

    CAS  PubMed  Google Scholar 

  33. Sur, C. et al. N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-d-aspartate receptor activity. Proc. Natl Acad. Sci. USA 100, 13674–13679 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jones, C. K. et al. Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J. Neurosci. 28, 10422–10433 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Langmead, C. J. et al. Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28-1. Br. J. Pharmacol. 154, 1104–1115 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lebois, E. P. et al. Discovery and characterization of novel subtype-selective allosteric agonists for the investigation of M1 receptor function in the central nervous system. ACS Chem. Neurosci. 1, 104–121 (2010).

    CAS  PubMed  Google Scholar 

  37. Lebon, G. et al. Mutagenic mapping suggests a novel binding mode for selective agonists of M1 muscarinic acetylcholine receptors. Mol. Pharmacol. 75, 331–341 (2009).

    CAS  PubMed  Google Scholar 

  38. Digby, G. J. et al. Chemical modification of the M1 agonist VU0364572 reveals molecular switches in pharmacology and a bitopic binding mode. ACS Chem. Neurosci. 3, 1025–1036 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Valant, C. et al. A novel mechanism of G protein-coupled receptor functional selectivity: muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J. Biol. Chem. 283, 29312–29321 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kenakin, T. Allosteric modulators: the new generation of receptor antagonist. Mol. Interv. 4, 222–229 (2004).

    CAS  PubMed  Google Scholar 

  41. Rodriguez, A. L. et al. Discovery of novel allosteric modulators of metabotropic glutamate receptor subtype 5 reveals chemical and functional diversity and in vivo activity in rat behavioral models of anxiolytic and antipsychotic activity. Mol. Pharmacol. 78, 1105–1123 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Malherbe, P. et al. Mutational analysis and molecular modeling of the allosteric binding site of a novel, selective, noncompetitive antagonist of the metabotropic glutamate 1 receptor. J. Biol. Chem. 278, 8340–8347 (2003).

    CAS  PubMed  Google Scholar 

  43. Brauner-Osborne, H. Wellendorph, P. & Jensen, A. A. Structure, pharmacology and therapeutic prospects of family C G-protein coupled receptors. Curr. Drug Targets 8, 169–184 (2007).

    PubMed  Google Scholar 

  44. Gregory, K. J. et al. Allosteric modulation of metabotropic glutamate receptors: structural insights and therapeutic potential. Neuropharmacology 60, 66–81 (2011).

    CAS  PubMed  Google Scholar 

  45. Gregory, K. J. et al. Probing the metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulator (PAM) binding pocket: discovery of point mutations that engender a “molecular switch” in PAM pharmacology. Mol. Pharmacol. 83, 991–1006 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, C. I. & Lewis, R. J. Emerging opportunities for allosteric modulation of G-protein coupled receptors. Biochem. Pharmacol. 85, 153–162 (2013).

    CAS  PubMed  Google Scholar 

  47. Bokoch, M. P. et al. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463, 108–112 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu, H. et al. Structure of class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344, 58–64 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hollenstein, K. et al. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499, 438–443 (2013).

    CAS  PubMed  Google Scholar 

  51. Nguyen, E. D. et al. Assessment and challenges of ligand docking into comparative models of G-protein coupled receptors. PLoS ONE 8, e67302 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dror, R. O. et al. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503, 295–299 (2013).

    CAS  PubMed  Google Scholar 

  53. Avlani, V. A. et al. Critical role for the second extracellular loop in the binding of both orthosteric and allosteric G protein-coupled receptor ligands. J. Biol. Chem. 282, 25677–25686 (2007).

    CAS  PubMed  Google Scholar 

  54. Hoare, S. R. et al. Allosteric ligands for the corticotropin releasing factor type 1 receptor modulate conformational states involved in receptor activation. Mol. Pharmacol. 73, 1371–1380 (2008).

    CAS  PubMed  Google Scholar 

  55. Niswender, C. M. & Conn, P. J. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 50, 295–322 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Satoh, A. et al. Discovery and in vitro and in vivo profiles of 4-fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide as novel class of an orally active metabotropic glutamate receptor 1 (mGluR1) antagonist. Bioorg. Med. Chem. Lett. 19, 5464–5468 (2009).

    CAS  PubMed  Google Scholar 

  57. Katritch, V., Cherezov, V. & Stevens, R. C. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53, 531–556 (2013).

    CAS  PubMed  Google Scholar 

  58. Urwyler, S. Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol. Rev. 63, 59–126 (2011).

    CAS  PubMed  Google Scholar 

  59. Hemstapat, K. et al. A novel class of positive allosteric modulators of metabotropic glutamate receptor subtype 1 interact with a site distinct from that of negative allosteric modulators. Mol. Pharmacol. 70, 616–626 (2006).

    CAS  PubMed  Google Scholar 

  60. Chen, Y. et al. Interaction of novel positive allosteric modulators of metabotropic glutamate receptor 5 with the negative allosteric antagonist site is required for potentiation of receptor responses. Mol. Pharmacol. 71, 1389–1398 (2007).

    CAS  PubMed  Google Scholar 

  61. Annoura, H. et al. A novel class of antagonists for metabotropic glutamate receptors, 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylates. Bioorg. Med. Chem. Lett. 6, 763–766 (1996).

    CAS  Google Scholar 

  62. Litschig, S. et al. CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol. Pharmacol. 55, 453–461 (1999).

    CAS  PubMed  Google Scholar 

  63. Varney, M. A. et al. SIB-1757 and SIB-1893: selective, noncompetitive antagonists of metabotropic glutamate receptor type 5. J. Pharmacol. Exp. Ther. 290, 170–181 (1999).

    CAS  PubMed  Google Scholar 

  64. Wenthur, C. J. et al. Discovery of (R)-(2-fluoro-4-((-4- methoxyphenyl)ethynyl)phenyl) (3-hydroxypiperidin- 1-yl)methanone (ML337), an mGlu3 selective and CNS penetrant negative allosteric modulator (NAM). J. Med. Chem. 56, 5208–5212 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sheffler, D. J. et al. Allosteric modulation of metabotropic glutamate receptors. Adv. Pharmacol. 62, 37–77 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kalinichev, M. et al. ADX71743, a potent and selective negative allosteric modulator of metabotropic glutamate receptor 7: in vitro and in vivo characterization. J. Pharmacol. Exp. Ther. 344, 624–636 (2013).

    CAS  PubMed  Google Scholar 

  67. Jones, C. K. et al. The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with l-DOPA or an adenosine 2A antagonist in preclinical rodent models of Parkinson's disease. J. Pharmacol. Exp. Ther. 340, 404–421 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Le Poul, E. et al. A potent and selective metabotropic glutamate receptor 4 positive allosteric modulator improves movement in rodent models of Parkinson's disease. J. Pharmacol. Exp. Ther. 343, 167–177 (2012).

    CAS  PubMed  Google Scholar 

  69. Bennouar, K. E. et al. Synergy between l-DOPA and a novel positive allosteric modulator of metabotropic glutamate receptor 4: implications for Parkinson's disease treatment and dyskinesia. Neuropharmacology 66, 158–169 (2013).

    CAS  PubMed  Google Scholar 

  70. Brady, A. E. et al. Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J. Pharmacol. Exp. Ther. 327, 941–953 (2008).

    CAS  PubMed  Google Scholar 

  71. Byun, N. E. et al. Antipsychotic drug-like effects of the selective M4 muscarinic acetylcholine receptor positive allosteric modulator VU0152100. Neuropsychopharmacology 39, 1578–1593 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ma, L. et al. Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc. Natl Acad. Sci. USA 106, 15950–15955 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Marlo, J. E. et al. Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol. Pharmacol. 75, 577–588 (2009).

    CAS  PubMed  Google Scholar 

  74. Shirey, J. K. et al. A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J. Neurosci. 29, 14271–14286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chan, W. Y. et al. Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc. Natl Acad. Sci. USA 105, 10978–10983 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shirey, J. K. et al. An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nature Chem. Biol. 4, 42–50 (2008).

    CAS  Google Scholar 

  77. Bridges, T. M. et al. Discovery of the first highly M5-preferring muscarinic acetylcholine receptor ligand, an M5 positive allosteric modulator derived from a series of 5-trifluoromethoxy N-benzyl isatins. J. Med. Chem. 52, 3445–3448 (2009).

    CAS  PubMed  Google Scholar 

  78. Melancon, B. J. et al. Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. J. Med. Chem. 55, 1445–1464 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Digby, G. J. et al. Novel allosteric agonists of M1 muscarinic acetylcholine receptors induce brain region-specific responses that correspond with behavioral effects in animal models. J. Neurosci. 32, 8532–8544 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Valant, C. et al. Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Mol. Pharmacol. 81, 41–52 (2012).

    CAS  PubMed  Google Scholar 

  81. Suratman, S. et al. Impact of species variability and 'probe-dependence' on the detection and in vivo validation of allosteric modulation at the M4 muscarinic acetylcholine receptor. Br. J. Pharmacol. 162, 1659–1670 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cho, H. P. et al. A novel class of succinimide-derived negative allosteric modulators of metabotropic glutamate receptor subtype 1 provides insight into a disconnect in activity between the rat and human receptors. ACS Chem. Neurosci. http://dx.doi.org/10.1021/cn5000343 (2014).

  83. Parmentier-Batteur, S. et al. Mechanism based neurotoxicity of mGlu5 positive allosteric modulators — development challenges for a promising novel antipsychotic target. Neuropharmacology 82, 161–173 (2013).

    PubMed  Google Scholar 

  84. Nickols, H. H. & Conn, P. J. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol. Dis. 61, 55–71 (2014).

    PubMed  Google Scholar 

  85. Marino, M. J. et al. Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson's disease treatment. Proc. Natl Acad. Sci. USA 100, 13668–13673 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kenakin, T. & Christopoulos, A. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nature Rev. Drug Discov. 12, 205–216 (2013).

    CAS  Google Scholar 

  87. Digby, G. J., Conn, P. J. & Lindsley, C. W. Orthosteric- and allosteric-induced ligand-directed trafficking at GPCRs. Curr. Opin. Drug Discov. Devel. 13, 587–594 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. López De Jesús, M. et al. Cyclic AMP-dependent and Epac-mediated activation of R-Ras by G protein-coupled receptors leads to phospholipase D stimulation. J. Biol. Chem. 281, 21837–21847 (2006).

    Google Scholar 

  89. Leach, K. et al. Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology 35, 855–869 (2010).

    CAS  PubMed  Google Scholar 

  90. Zhang, Y., Rodriguez, A. L. & Conn, P. J. Allosteric potentiators of metabotropic glutamate receptor subtype 5 have differential effects on different signaling pathways in cortical astrocytes. J. Pharmacol. Exp. Ther. 315, 1212–1219 (2005).

    CAS  PubMed  Google Scholar 

  91. Sheffler, D. J. & Conn, P. J. Allosteric potentiators of metabotropic glutamate receptor subtype 1a differentially modulate independent signaling pathways in baby hamster kidney cells. Neuropharmacology 55, 419–427 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Leach, K. et al. Identification of molecular phenotypes and biased signaling induced by naturally occurring mutations of the human calcium-sensing receptor. Endocrinology 153, 4304–4316 (2012).

    CAS  PubMed  Google Scholar 

  93. Davey, A. E. et al. Positive and negative allosteric modulators promote biased signaling at the calcium-sensing receptor. Endocrinology 153, 1232–1241 (2012).

    CAS  PubMed  Google Scholar 

  94. Ahn, K. H., Mahmoud, M. M. & Kendall, D. A. Allosteric modulator ORG27569 induces CB1 cannabinoid receptor high affinity agonist binding state, receptor internalization, and Gi protein-independent ERK1/2 kinase activation. J. Biol. Chem. 287, 12070–12082 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Niswender, C. M. et al. Context-dependent pharmacology exhibited by negative allosteric modulators of metabotropic glutamate receptor 7. Mol. Pharmacol. 77, 459–468 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Mathiesen, J. M. et al. Identification of indole derivatives exclusively interfering with a G protein-independent signaling pathway of the prostaglandin D2 receptor CRTH2. Mol. Pharmacol. 68, 393–402 (2005).

    CAS  PubMed  Google Scholar 

  97. Maillet, E. L. et al. A novel, conformation-specific allosteric inhibitor of the tachykinin NK2 receptor (NK2R) with functionally selective properties. FASEB J. 21, 2124–2134 (2007).

    CAS  PubMed  Google Scholar 

  98. Noetzel, M. J. et al. A novel metabotropic glutamate receptor 5 positive allosteric modulator acts at a unique site and confers stimulus bias to mGlu5 signaling. Mol. Pharmacol. 83, 835–847 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Goshal, A. et al. Stimulus bias of metabotropic glutamate receptor 5 allosteric modulators — impact on CNS effects and implications for therapeutic use. Program No. 614.01. 2013 Neuroscience Meeting Planner. (San Diego, CA; Society for Neuroscience, 2013).

    Google Scholar 

  100. Price, M. R. et al. Allosteric modulation of the cannabinoid CB1 receptor. Mol. Pharmacol. 68, 1484–1495 (2005).

    CAS  PubMed  Google Scholar 

  101. Wang, X. et al. Effects of the allosteric antagonist 1-(4-chlorophenyl)-3-[3-(6-pyrrolidin-1-ylpyridin-2-yl)phenyl]urea (PSNCBAM-1) on CB1 receptor modulation in the cerebellum. Mol. Pharmacol. 79, 758–767 (2011).

    CAS  PubMed  Google Scholar 

  102. Ayoub, M. A. et al. Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 21522–21528 (2002).

    CAS  PubMed  Google Scholar 

  103. Ayoub, M. A. et al. Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers. Mol. Pharmacol. 66, 312–321 (2004).

    CAS  PubMed  Google Scholar 

  104. Ferre, S. et al. Adenosine A1 receptor-mediated modulation of dopamine D1 receptors in stably cotransfected fibroblast cells. J. Biol. Chem. 273, 4718–4724 (1998).

    CAS  PubMed  Google Scholar 

  105. Milligan, G. The prevalence, maintenance, and relevance of G protein-coupled receptor oligomerization. Mol. Pharmacol. 84, 158–169 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Rozenfeld, R. & Devi, L. A. Exploring a role for heteromerization in GPCR signalling specificity. Biochem. J. 433, 11–18 (2011).

    CAS  PubMed  Google Scholar 

  107. Ferre, S. et al. G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol. Rev. 66, 413–434 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kostenis, E. et al. G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation 111, 1806–1813 (2005).

    CAS  PubMed  Google Scholar 

  109. AbdAlla, S. et al. The angiotensin II AT2 receptor is an AT1 receptor antagonist. J. Biol. Chem. 276, 39721–39726 (2001).

    CAS  PubMed  Google Scholar 

  110. Levoye, A. et al. The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J. 25, 3012–3023 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Milligan, G. The role of dimerisation in the cellular trafficking of G-protein-coupled receptors. Curr. Opin. Pharmacol. 10, 23–29 (2010).

    CAS  PubMed  Google Scholar 

  112. Archbold, J. K. et al. Structural insights into RAMP modification of secretin family G protein-coupled receptors: implications for drug development. Trends Pharmacol. Sci. 32, 591–600 (2011).

    CAS  PubMed  Google Scholar 

  113. Pin, J. P. & Prezeau, L. Allosteric modulators of GABAB receptors: mechanism of action and therapeutic perspective. Curr. Neuropharmacol. 5, 195–201 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kniazeff, J. et al. Dimers and beyond: the functional puzzles of class C GPCRs. Pharmacol. Ther. 130, 9–25 (2011).

    CAS  PubMed  Google Scholar 

  115. Romano, C., Yang, W. L. & O'Malley, K. L. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J. Biol. Chem. 271, 28612–28616 (1996).

    CAS  PubMed  Google Scholar 

  116. Doumazane, E. et al. A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J. 25, 66–77 (2011).

    CAS  PubMed  Google Scholar 

  117. Kammermeier, P. J. Functional and pharmacological characteristics of metabotropic glutamate receptors 2/4 heterodimers. Mol. Pharmacol. 82, 438–447 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lundstrom, L. et al. Structural determinants of allosteric antagonism at metabotropic glutamate receptor 2: mechanistic studies with new potent negative allosteric modulators. Br. J. Pharmacol. 164, 521–537 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Hlavackova, V. et al. Evidence for a single heptahelical domain being turned on upon activation of a dimeric GPCR. EMBO J. 24, 499–509 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Yin, S. et al. Selective actions of novel allosteric modulators reveal functional heteromers of metabotropic glutamate receptors in the CNS. J. Neurosci. 34, 79–94 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ortuno, D. et al. Identification and characterization of a potent and selective positive allosteric modulator of mGluR4. Program No. 823.27. 2008 Neuroscience Meeting Planner. (Washington, DC; Society for Neuroscience, 2008).

    Google Scholar 

  122. Jones, P. J., Xiang, Z. & Conn, P. J. Metabotropic glutamate receptors mGluR4 and mGluR8 regulate transmission in the lateral olfactory tract-piriform cortex synapse. Neuropharmacology 55, 440–446 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Valenti, O. et al. Group III metabotropic glutamate-receptor-mediated modulation of excitatory transmission in rodent substantia nigra pars compacta dopamine neurons. J. Pharmacol. Exp. Ther. 313, 1296–1304 (2005).

    CAS  PubMed  Google Scholar 

  124. Melancon, B. J. et al. Allosteric modulation of the M1 muscarinic acetylcholine receptor: improving cognition and a potential treatment for schizophrenia and Alzheimer's disease. Drug Discov. Today 18, 1185–1199 (2013).

    CAS  PubMed  Google Scholar 

  125. Menniti, F. S. et al. Allosteric modulators for the treatment of schizophrenia: targeting glutamatergic networks. Curr. Top. Med. Chem. 13, 26–54 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wenthur, C. J. et al. Drugs for allosteric sites on receptors. Annu. Rev. Pharmacol. Toxicol. 54, 165–184 (2014).

    CAS  PubMed  Google Scholar 

  127. Wood, M. R. et al. “Molecular switches” on mGluR allosteric ligands that modulate modes of pharmacology. Biochemistry 50, 2403–2410 (2011).

    CAS  PubMed  Google Scholar 

  128. Sharma, S. et al. Synthesis and SAR of an mGluR5 allosteric partial antagonist lead: unexpected modulation of pharmacology with slight structural modifications to a 5-(phenylethynyl)pyrimidine scaffold. Bioorg. Med. Chem. Lett. 18, 4098–4101 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Sharma, S. et al. Discovery of molecular switches that modulate modes of metabotropic glutamate receptor subtype 5 (mGlu5) pharmacology in vitro and in vivo within a series of functionalized, regioisomeric 2- and 5-(phenylethynyl)pyrimidines. J. Med. Chem. 52, 4103–4106 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Schann, S. et al. Chemical switch of a metabotropic glutamate receptor 2 silent allosteric modulator into dual metabotropic glutamate receptor 2/3 negative/positive allosteric modulators. J. Med. Chem. 53, 8775–8779 (2010).

    CAS  PubMed  Google Scholar 

  131. Zhao, Z. et al. Challenges in the development of mGluR5 positive allosteric modulators: the discovery of CPPHA. Bioorg. Med. Chem. Lett. 17, 1386–1391 (2007).

    CAS  PubMed  Google Scholar 

  132. Shirey, J. et al. A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J. Neurosci. 29, 14271–14286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Yang, F. V. et al. Parallel synthesis of N-biaryl quinolone carboxylic acids as selective M1 positive allosteric modulators. Bioorg. Med. Chem. Lett. 20, 531–536 (2010).

    CAS  PubMed  Google Scholar 

  134. Mistry, S. N. et al. Synthesis and pharmacological profiling of analogues of benzyl quinolone carboxylic acid (BQCA) as allosteric modulators of the M1 muscarinic receptor. J. Med. Chem. 56, 5151–5172 (2013).

    CAS  PubMed  Google Scholar 

  135. Gjoni, T. & Urwyler, S. Receptor activation involving positive allosteric modulation, unlike full agonism, does not result in GABAB receptor desensitization. Neuropharmacology 55, 1293–1299 (2008).

    CAS  PubMed  Google Scholar 

  136. Sanger, H. et al. Pharmacological profiling of native group II metabotropic glutamate receptors in primary cortical neuronal cultures using a FLIPR. Neuropharmacology 66, 264–273 (2013).

    CAS  PubMed  Google Scholar 

  137. Parmentier-Batteur, S. et al. Differential effects of the mGluR5 positive allosteric modulator CDPPB in the cortex and striatum following repeated administration. Neuropharmacology 62, 1453–1460 (2012).

    CAS  PubMed  Google Scholar 

  138. Li, X. et al. Repeated dosing with oral allosteric modulator of adenosine A1 receptor produces tolerance in rats with neuropathic pain. Anesthesiology 100, 956–961 (2004).

    CAS  PubMed  Google Scholar 

  139. Mukherjee, S. & Manahan-Vaughan, D. Role of metabotropic glutamate receptors in persistent forms of hippocampal plasticity and learning. Neuropharmacology 66, 65–81 (2013).

    CAS  PubMed  Google Scholar 

  140. Gasparini, F. et al. 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38, 1493–1503 (1999).

    CAS  PubMed  Google Scholar 

  141. Huber, K. M., Roder, J. C. & Bear, M. F. Chemical induction of mGluR5- and protein synthesis-dependent long-term depression in hippocampal area CA1. J. Neurophysiol. 86, 321–325 (2001).

    CAS  PubMed  Google Scholar 

  142. Bear, M. F., Huber, K. M. & Warren, S. T. The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370–377 (2004).

    CAS  PubMed  Google Scholar 

  143. Lecourtier, L. et al. Positive allosteric modulation of metabotropic glutamate 5 (mGlu5) receptors reverses N-methyl-d-aspartate antagonist-induced alteration of neuronal firing in prefrontal cortex. Biol. Psychiatry 62, 739–746 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Darrah, J. M., Stefani, M. R. & Moghaddam, B. Interaction of N-methyl-d-aspartate and group 5 metabotropic glutamate receptors on behavioral flexibility using a novel operant set-shift paradigm. Behav. Pharmacol. 19, 225–234 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu, F. et al. ADX47273 [S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]-oxadiazol-5-yl]-piperidin-1-yl}-methanone]: a novel metabotropic glutamate receptor 5-selective positive allosteric modulator with preclinical antipsychotic-like and procognitive activities. J. Pharmacol. Exp. Ther. 327, 827–839 (2008).

    CAS  PubMed  Google Scholar 

  146. Balschun, D., Zuschratter, W. & Wetzel, W. Allosteric enhancement of metabotropic glutamate receptor 5 function promotes spatial memory. Neuroscience 142, 691–702 (2006).

    CAS  PubMed  Google Scholar 

  147. Reichel, C. M. et al. Loss of object recognition memory produced by extended access to methamphetamine self-administration is reversed by positive allosteric modulation of metabotropic glutamate receptor 5. Neuropsychopharmacology 36, 782–792 (2011).

    CAS  PubMed  Google Scholar 

  148. Xu, J. et al. Potentiating mGluR5 function with a positive allosteric modulator enhances adaptive learning. Learn. Mem. 20, 438–445 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Gregory, K. J. et al. N-aryl piperazine metabotropic glutamate receptor 5 positive allosteric modulators possess efficacy in preclinical models of NMDA hypofunction and cognitive enhancement. J. Pharmacol. Exp. Ther. 347, 438–457 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Gastambide, F. et al. Selective remediation of reversal learning deficits in the neurodevelopmental MAM model of schizophrenia by a novel mGlu5 positive allosteric modulator. Neuropsychopharmacology 37, 1057–1066 (2012).

    CAS  PubMed  Google Scholar 

  151. Gastambide, F. et al. The mGlu5 positive allosteric modulator LSN2463359 differentially modulates motor, instrumental and cognitive effects of NMDA receptor antagonists in the rat. Neuropharmacology 64, 240–247 (2013).

    CAS  PubMed  Google Scholar 

  152. Wong, R. K. et al. Group I mGluR-induced epileptogenesis: distinct and overlapping roles of mGluR1 and mGluR5 and implications for antiepileptic drug design. Epilepsy Curr. 5, 63–68 (2005).

    PubMed  PubMed Central  Google Scholar 

  153. Doré, A. S. et al. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511, 557–562 (2014).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the following grant support: US National Institutes of Health (NIH) grants U01 MH087956, R01 MH062646, R01 MH073676, U19 MH097056, R01 NS031373, P50 NS071669 (to P.J.C.); R01 DA023947, R01 MH082867, U54 MH084659, U19 MH097056 (to C.W.L.); NIH grants R01 GM080403, R01 MH090192, R01 GM099842, R01 DK097376) and NSF grants BIO Career 0742762 and CHE 1305874 (to J.M.); NIH grant R21 NS078262, a Basic Research Grant from the International Rett Syndrome Foundation, and a Treatment Award from Autism Speaks (to C.M.N). Vanderbilt Specialized Chemistry Center is in the Molecular Libraries Probe Centers Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jeffrey Conn.

Ethics declarations

Competing interests

P.J.C., C.W.L. and C.M.N. receive research support from Bristol-Myers Squibb and AstraZeneca. Each of these three authors is an inventor on patents that protect different classes of metabotropic glutamate and muscarinic receptor allosteric modulators and have been licensed by Vanderbilt University to AstraZeneca, Bristol-Myers Squibb, and Johnson & Johnson. C.W.L. has consulted for AbbVie and received compensation. Over the past 2 years, P.J.C. has consulted for and received compensation from Pfizer, Cambridge, Massachusetts, USA.

Related links

Further information

Protein Data Bank

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Reported allosteric modulators of family A G protein-coupled receptors (PDF 204 kb)

Supplementary information S2 (table)

Reported allosteric modulators of family B G-protein-coupled receptors (PDF 148 kb)

Supplementary information S3 (table)

Reported allosteric modulators of family C G-protein-coupled receptors (PDF 228 kb)

Glossary

Cooperativity factors

Parameters that are used to quantify the magnitude of the effect of an allosteric ligand on the affinity or functional response to the orthosteric ligand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conn, P., Lindsley, C., Meiler, J. et al. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat Rev Drug Discov 13, 692–708 (2014). https://doi.org/10.1038/nrd4308

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrd4308

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research