Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in the development of influenza virus vaccines

An Erratum to this article was published on 06 March 2015

This article has been updated

Key Points

  • Seasonal influenza virus vaccines are an effective countermeasure against influenza if the vaccine strains and the circulating viruses are well matched; vaccine efficacy drops sharply if mismatched viruses are circulating.

  • Viruses from the animal reservoir, including H3N2v, H5N1, H5N6, H6N1, H7N3, H7N9 and H10N8, have recently caused morbidity and mortality in humans. Although these viruses are unable to transmit efficiently among humans, the development of pre-pandemic vaccine candidates that could enhance pandemic preparedness is warranted.

  • Pandemic influenza virus vaccines must be produced in a timely manner to effectively reduce the impact of a novel pandemic virus on the global human population. Technological advances such as gene synthesis, reverse genetics and recombinant production systems will facilitate the production of vaccines more rapidly in response to future influenza pandemics.

  • Novel human monoclonal antibody technology has helped provide a better understanding of the humoral (crossreactive) immune responses against the influenza virus surface glycoproteins haemagglutinin and neuraminidase.

  • Glycosylation of haemagglutinin and neuraminidase has a role in the immunogenicity of influenza virus vaccines and vaccine candidates.

  • Broadly protective antibodies against the haemagglutinin stalk domain and neuraminidase guide the design of novel, broadly protective vaccines. Novel influenza virus vaccine candidates that induce broad or universal influenza virus coverage are currently in preclinical and clinical development.

  • Broadly protective or universal influenza virus vaccines could abolish the need for annual reformulation and re-administration of seasonal influenza virus vaccines and could improve our pandemic preparedness.

Abstract

Influenza virus infections are a major public health concern and cause significant morbidity and mortality worldwide. Current influenza virus vaccines are an effective countermeasure against infection but need to be reformulated almost every year owing to antigenic drift. Furthermore, these vaccines do not protect against novel pandemic strains, and the timely production of pandemic vaccines remains problematic because of the limitations of current technology. Several improvements have been made recently to enhance immune protection induced by seasonal and pandemic vaccines, and to speed up production in case of a pandemic. Importantly, vaccine constructs that induce broad or even universal influenza virus protection are currently in preclinical and clinical development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Advances in the pandemic influenza virus vaccine production process.
Figure 2: Mechanism of action of haemagglutinin-specific and neuraminidase-specific antibodies.
Figure 3: Glycosylated influenza virus haemagglutinin and neuraminidase molecules.
Figure 4: Chimeric haemagglutinin-based universal influenza virus vaccine strategies.
Figure 5: Strategies to enhance neuraminidase-based immunity.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 06 March 2015

    The citation number for reference 41, a World Health Organization monthly risk asssesment summary, was missing in the article text and reference list. This has been corrected in the online version. The statement at the end of the legend for Figure 1, related to the permission to adapt a figure in reference 227, has also been modified.

References

  1. World Health Organization. Influenza (seasonal) fact sheet. World Health Organization [online], (2014).

  2. Gerdil, C. The annual production cycle for influenza vaccine. Vaccine 21, 1776–1779 (2003).

    PubMed  Google Scholar 

  3. Palese, P. Influenza: old and new threats. Nature Med. 10, S82–S87 (2004).

    CAS  PubMed  Google Scholar 

  4. Johnson, N. P. & Mueller, J. Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull. Hist. Med. 76, 105–115 (2002).

    PubMed  Google Scholar 

  5. Palese, P. & Wang, T. T. Why do influenza virus subtypes die out? A hypothesis. MBio 2, e00150-11 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. Racaniello, V. Pandemic influenza vaccine was too late in 2009. Virology Blog [online], (2010).

    Google Scholar 

  7. Krammer, F. & Palese, P. Universal influenza virus vaccines: need for clinical trials. Nature Immunol. 15, 3–5 (2014).

    CAS  Google Scholar 

  8. Francis, T., Salk, J. E., Pearson, H. E. & Brown, P. N. Protective effect of vaccination against induced influenza A. J. Clin. Invest. 24, 536–546 (1945).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Salk, J. E., Pearson, H. E., Brown, P. N. & Francis, T. Protective effect of vaccination against induced influenza B. J. Clin. Invest. 24, 547–553 (1945).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Salk, J. E. & Suriano, P. C. Importance of antigenic composition of influenza virus vaccine in protecting against the natural disease; observations during the winter of 1947–1948. Am. J. Public Health Nations Health 39, 345–355 (1949).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Payne, A. M. The influenza programme of WHO. Bull. World Health Organ. 8, 755–774 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Allison, J. E., Glezen, W. P., Taber, L. H., Paredes, A. & Webster, R. G. Reactogenicity and immunogenicity of bivalent influenza A and monovalent influenza B virus vaccines in high-risk children. J. Infect. Dis. 136, S672–S676 (1977).

    PubMed  Google Scholar 

  13. Davenport, F. M. et al. Comparisons of serologic and febrile responses in humans to vaccination with influenza A viruses or their hemagglutinins. J. Lab. Clin. Med. 63, 5–13 (1964).

    CAS  PubMed  Google Scholar 

  14. Jin, H. & Subbarao, K. Live attenuated influenza vaccine. Curr. Top. Microbiol. Immunol. 386, 181–204 (2014).

    Google Scholar 

  15. Maassab, H. F. Adaptation and growth characteristics of influenza virus at 25 °C. Nature 213, 612–614 (1967).

    CAS  PubMed  Google Scholar 

  16. Alexandrova, G. I. et al. Study of live recombinant cold-adapted influenza bivalent vaccine of type A for use in children: an epidemiological control trial. Vaccine 4, 114–118 (1986).

    CAS  PubMed  Google Scholar 

  17. Tricco, A. C. et al. Comparing influenza vaccine efficacy against mismatched and matched strains: a systematic review and meta-analysis. BMC Med. 11, 153 (2013).

    PubMed  PubMed Central  Google Scholar 

  18. Steinhoff, M. C. et al. Neonatal outcomes after influenza immunization during pregnancy: a randomized controlled trial. CMAJ 184, 645–653 (2012).

    PubMed  PubMed Central  Google Scholar 

  19. Sheffield, J. S. et al. Effect of influenza vaccination in the first trimester of pregnancy. Obstet. Gynecol. 120, 532–537 (2012).

    PubMed  Google Scholar 

  20. Beyer, W. E. et al. Cochrane re-arranged: support for policies to vaccinate elderly people against influenza. Vaccine 31, 6030–6033 (2013).

    PubMed  Google Scholar 

  21. Ohmit, S. E. et al. Influenza vaccine effectiveness in the community and the household. Clin. Infect. Dis. 56, 1363–1369 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kissling, E. et al. Low and decreasing vaccine effectiveness against influenza A(H3) in 2011/12 among vaccination target groups in Europe: results from the I-MOVE multicentre case–control study. Euro Surveill. 18, 20390 (2013).

    PubMed  Google Scholar 

  23. Clark, A. et al. A comparison of live and inactivated influenza A (H1N1) virus vaccines. 2. Long-term immunity. J. Hyg. (Lond.) 90, 361–370 (1983).

    CAS  Google Scholar 

  24. de Jong, J. C., Beyer, W. E., Palache, A. M., Rimmelzwaan, G. F. & Osterhaus, A. D. Mismatch between the 1997/1998 influenza vaccine and the major epidemic A(H3N2) virus strain as the cause of an inadequate vaccine-induced antibody response to this strain in the elderly. J. Med. Virol. 61, 94–99 (2000).

    CAS  PubMed  Google Scholar 

  25. DiazGranados, C. A. et al. High-dose trivalent influenza vaccine compared to standard dose vaccine in elderly adults: safety, immunogenicity and relative efficacy during the 2009–2010 season. Vaccine 31, 861–866 (2013).

    CAS  PubMed  Google Scholar 

  26. DiazGranados, C. A. et al. Efficacy of high-dose versus standard-dose influenza vaccine in older adults. N. Engl. J. Med. 371, 635–645 (2014).

    PubMed  Google Scholar 

  27. O'Hagan, D. T., Ott, G. S., Nest, G. V., Rappuoli, R. & Giudice, G. D. The history of MF59® adjuvant: a phoenix that arose from the ashes. Expert Rev. Vaccines 12, 13–30 (2013).

    CAS  PubMed  Google Scholar 

  28. Del Giudice, G. & Rappuoli, R. Inactivated and adjuvanted influenza vaccines. Curr. Top. Microbiol. Immunol. 386, 151–180 (2014).

    Google Scholar 

  29. Ledgerwood, J. E. AS03-adjuvanted influenza vaccine in elderly people. Lancet Infect. Dis. 13, 466–467 (2013).

    PubMed  Google Scholar 

  30. Tinoco, J. C. et al. Immunogenicity, reactogenicity, and safety of inactivated quadrivalent influenza vaccine candidate versus inactivated trivalent influenza vaccine in healthy adults aged ≥18 years: a phase III, randomized trial. Vaccine 32, 1480–1487 (2014).

    CAS  PubMed  Google Scholar 

  31. Jain, V. K. et al. Vaccine for prevention of mild and moderate-to-severe influenza in children. N. Engl. J. Med. 369, 2481–2491 (2013).

    CAS  PubMed  Google Scholar 

  32. Esposito, S. & Principi, N. Vaccine for prevention of influenza in children. N. Engl. J. Med. 370, 1167 (2014).

    CAS  PubMed  Google Scholar 

  33. Wei, C. J. et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 329, 1060–1064 (2010).

    CAS  PubMed  Google Scholar 

  34. Wei, C. J. et al. Elicitation of broadly neutralizing influenza antibodies in animals with previous influenza exposure. Sci. Transl. Med. 4, 147ra114 (2012).

    PubMed  Google Scholar 

  35. Kanekiyo, M. et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499, 102–106 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Centers for Disease Control and Prevention. Table. Influenza vaccines — United States, 2014–15 influenza season. Centers for Disease Control and Prevention [online], (2014).

  37. US Food and Drug Administration. FDA approves new seasonal influenza vaccine made using novel technology. US Food and Drug Administration [online], (2013).

  38. Claas, E. C. et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351, 472–477 (1998).

    CAS  PubMed  Google Scholar 

  39. Vijaykrishna, D. et al. Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses. PLoS Pathog. 4, e1000161 (2008).

    PubMed  PubMed Central  Google Scholar 

  40. Hatta, M., Gao, P., Halfmann, P. & Kawaoka, Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840–1842 (2001).

    CAS  PubMed  Google Scholar 

  41. World Health Organization. The WHO Influenza Monthly Risk Assessment Summaries. World Health Organization [online], (2015).

  42. Wang, T. T., Parides, M. K. & Palese, P. Seroevidence for H5N1 influenza infections in humans: meta-analysis. Science 335, 1463 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Garten, R. et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325, 197–201 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao, R. et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N. Engl. J. Med. 368, 1888–1897 (2013).

    CAS  PubMed  Google Scholar 

  45. Wei, S. H. et al. Human infection with avian influenza A H6N1 virus: an epidemiological analysis. Lancet Respir. Med. 1, 771–778 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. García-Sastre, A. & Schmolke, M. Avian influenza A H10N8 — a virus on the verge? Lancet 383, 676–677 (2014).

    PubMed  Google Scholar 

  47. Chen, H. et al. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet 383, 714–721 (2014).

    PubMed  Google Scholar 

  48. Park, M. World's first H5N6 bird flu death reported in China. CNN [online], (2014).

    Google Scholar 

  49. Centers for Disease Control and Prevention (CDC). Notes from the field: outbreak of influenza A (H3N2) virus among persons and swine at a county fair — Indiana, July 2012. MMWR Morb. Mortal. Wkly Rep. 61, 561 (2012).

  50. Lopez-Martinez, I. et al. Highly pathogenic avian influenza A(H7N3) virus in poultry workers, Mexico, 2012. Emerg. Infect. Dis. 19, 1531–1534 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Anthony, S. J. et al. Emergence of fatal avian influenza in New England harbor seals. MBio 3, e00166-12 (2012).

    PubMed  PubMed Central  Google Scholar 

  52. Zohari, S., Neimanis, A., Harkonen, T., Moraeus, C. & Valarcher, J. Avian influenza A(H10N7) virus involvement in mass mortality of harbour seals (Phoca vitulina) in Sweden, March through October 2014. Euro Surveill. 19, 20967 (2014).

    PubMed  Google Scholar 

  53. [No authors listed.] Avian influenza outbreak in Yorkshire: strain identified as H5N8. Vet. Rec. 175, 495–496 (2014).

  54. Krammer, F. & Cox, R. J. The emergence of H7N9 viruses: a chance to redefine correlates of protection for influenza virus vaccines. Expert Rev. Vaccines 12, 1369–1372 (2013).

    CAS  PubMed  Google Scholar 

  55. Cox, R. J. et al. A phase I clinical trial of a PER.C6® cell grown influenza H7 virus vaccine. Vaccine 27, 1889–1897 (2009).

    CAS  PubMed  Google Scholar 

  56. Couch, R. B. et al. Evaluations for in vitro correlates of immunogenicity of inactivated influenza a H5, H7 and H9 vaccines in humans. PLoS ONE 7, e50830 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Couch, R. B., Patel, S. M., Wade-Bowers, C. L. & Niño, D. A randomized clinical trial of an inactivated avian influenza A (H7N7) vaccine. PLoS ONE 7, e49704 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kistner, O. et al. Cell culture (Vero) derived whole virus (H5N1) vaccine based on wild-type virus strain induces cross-protective immune responses. Vaccine 25, 6028–6036 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Baz, M., Luke, C. J., Cheng, X., Jin, H. & Subbarao, K. H5N1 vaccines in humans. Virus Res. 178, 78–98 (2013).

    CAS  PubMed  Google Scholar 

  60. Belshe, R. B. et al. Immunogenicity of avian influenza A/Anhui/01/2005(H5N1) vaccine with MF59 adjuvant: a randomized clinical trial. JAMA 312, 1420–1428 (2014).

    PubMed  Google Scholar 

  61. Mulligan, M. J. et al. Serological responses to an avian influenza A/H7N9 vaccine mixed at the point-of-use with MF59 adjuvant: a randomized clinical trial. JAMA 312, 1409–1419 (2014).

    CAS  PubMed  Google Scholar 

  62. Krammer, F. et al. An H7N1 influenza virus vaccine induces broadly reactive antibody responses against H7N9 in humans. Clin. Vaccine Immunol. 21, 1153–1163 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. Ellebedy, A. H. et al. Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans. Proc. Natl Acad. Sci. USA 111, 13133–13138 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nachbagauer, R. et al. Induction of broadly-reactive anti-hemagglutinin stalk antibodies by an H5N1 vaccine in humans. J. Virol. 88, 13260–13268 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Karron, R. A. et al. Evaluation of two live attenuated cold-adapted H5N1 influenza virus vaccines in healthy adults. Vaccine 27, 4953–4960 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Talaat, K. R. et al. A live attenuated H7N3 influenza virus vaccine is well tolerated and immunogenic in a phase I trial in healthy adults. Vaccine 27, 3744–3753 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Talaat, K. R. et al. An open label phase I trial of a live attenuated H6N1 influenza virus vaccine in healthy adults. Vaccine 29, 3144–3148 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Talaat, K. R. et al. An open-label phase I trial of a live attenuated H2N2 influenza virus vaccine in healthy adults. Influenza Other Respir. Viruses 7, 66–73 (2013).

    CAS  PubMed  Google Scholar 

  69. Rudenko, L. et al. Assessment of human immune responses to H7 avian influenza virus of pandemic potential: results from a placebo-controlled, randomized double-blind phase I study of live attenuated H7N3 influenza vaccine. PLoS ONE 9, e87962 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Rudenko, L., Isakova-Sivak, I. & Donina, S. H7N3 live attenuated influenza vaccine has a potential to protect against new H7N9 avian influenza virus. Vaccine 31, 4702–4705 (2013).

    CAS  PubMed  Google Scholar 

  71. Rudenko, L. et al. Safety and immunogenicity of live attenuated influenza reassortant H5 vaccine (phase I–II clinical trials). Influenza Other Respir. Viruses 2, 203–209 (2008).

    PubMed  PubMed Central  Google Scholar 

  72. Matsuoka, Y. et al. African green monkeys recapitulate the clinical experience with replication of live attenuated pandemic influenza virus vaccine candidates. J. Virol. 88, 8139–8152 (2014).

    PubMed  PubMed Central  Google Scholar 

  73. Min, J. Y. et al. A live attenuated H7N7 candidate vaccine virus induces neutralizing antibody that confers protection from challenge in mice, ferrets, and monkeys. J. Virol. 84, 11950–11960 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Steel, J. et al. Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J. Virol. 83, 1742–1753 (2009).

    CAS  PubMed  Google Scholar 

  75. de Graaf, M. & Fouchier, R. A. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J. 33, 823–841 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ledgerwood, J. E. et al. Prime-boost interval matters: a randomized phase 1 study to identify the minimum interval necessary to observe the H5 DNA influenza vaccine priming effect. J. Infect. Dis. 208, 418–422 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Talaat, K. R. et al. A live attenuated influenza A(H5N1) vaccine induces long-term immunity in the absence of a primary antibody response. J. Infect. Dis. 209, 1860–1869 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Luke, C. J. & Subbarao, K. Improving pandemic H5N1 influenza vaccines by combining different vaccine platforms. Expert Rev. Vaccines 13, 873–883 (2014).

    CAS  PubMed  Google Scholar 

  79. Kistner, O. et al. Development of a mammalian cell (Vero) derived candidate influenza virus vaccine. Vaccine 16, 960–968 (1998).

    CAS  PubMed  Google Scholar 

  80. Dormitzer, P. R. Rapid production of synthetic influenza vaccines. Curr. Top. Microbiol. Immunol. 386, 237–273 (2015).

    CAS  PubMed  Google Scholar 

  81. Fodor, E. et al. Rescue of influenza A virus from recombinant DNA. J. Virol. 73, 9679–9682 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cox, M. M. Recombinant protein vaccines produced in insect cells. Vaccine 30, 1759–1766 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Krammer, F. & Grabherr, R. Alternative influenza vaccines made by insect cells. Trends Mol. Med. 16, 313–320 (2010).

    CAS  PubMed  Google Scholar 

  84. Jul-Larsen, Å. et al. The human potential of a recombinant pandemic influenza vaccine produced in tobacco plants. Hum. Vaccin. Immunother. 8, 653–661 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Aguilar-Yáñez, J. M. et al. An influenza A/H1N1/2009 hemagglutinin vaccine produced in Escherichia coli. PLoS ONE 5, e11694 (2010).

    PubMed  PubMed Central  Google Scholar 

  86. Taylor, D. N. et al. Development of VAX128, a recombinant hemagglutinin (HA) influenza–flagellin fusion vaccine with improved safety and immune response. Vaccine 30, 5761–5769 (2012).

    CAS  PubMed  Google Scholar 

  87. Shi, S. H. et al. Immunoprotection against influenza virus H9N2 by the oral administration of recombinant Lactobacillus plantarum NC8 expressing hemagglutinin in BALB/c mice. Virology 464–465, 166–176 (2014).

    CAS  PubMed  Google Scholar 

  88. Bayne, A. C. et al. Vaccination against influenza with recombinant hemagglutinin expressed by Schizochytrium sp. confers protective immunity. PLoS ONE 8, e61790 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Saelens, X. et al. Protection of mice against a lethal influenza virus challenge after immunization with yeast-derived secreted influenza virus hemagglutinin. Eur. J. Biochem. 260, 166–175 (1999).

    CAS  PubMed  Google Scholar 

  90. Murugan, S. et al. Recombinant haemagglutinin protein of highly pathogenic avian influenza A (H5N1) virus expressed in Pichia pastoris elicits a neutralizing antibody response in mice. J. Virol. Methods 187, 20–25 (2013).

    CAS  PubMed  Google Scholar 

  91. Welsh, J. P., Lu, Y., He, X. S., Greenberg, H. B. & Swartz, J. R. Cell-free production of trimeric influenza hemagglutinin head domain proteins as vaccine antigens. Biotechnol. Bioeng. 109, 2962–2969 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. DuBois, R. M. et al. The receptor-binding domain of influenza virus hemagglutinin produced in Escherichia coli folds into its native, immunogenic structure. J. Virol. 85, 865–872 (2011).

    CAS  PubMed  Google Scholar 

  93. Khurana, S. et al. H5N1 virus-like particle vaccine elicits cross-reactive neutralizing antibodies in humans that preferentially bind to oligomeric form of influenza hemagglutinin. J. Virol. 85, 10945–10954 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. López-Macías, C. et al. Safety and immunogenicity of a virus-like particle pandemic influenza A (H1N1) 2009 vaccine in a blinded, randomized, placebo-controlled trial of adults in Mexico. Vaccine 29, 7826–7834 (2011).

    PubMed  PubMed Central  Google Scholar 

  95. Krammer, F. et al. Swine-origin pandemic H1N1 influenza virus-like particles produced in insect cells induce hemagglutination inhibiting antibodies in BALB/c mice. Biotechnol. J. 5, 17–23 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Smith, G. E. et al. Development of influenza H7N9 virus like particle (VLP) vaccine: homologous A/Anhui/1/2013 (H7N9) protection and heterologous A/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus. Vaccine 31, 4305–4313 (2013).

    CAS  PubMed  Google Scholar 

  97. Klausberger, M. et al. One-shot vaccination with an insect cell-derived low-dose influenza A H7 virus-like particle preparation protects mice against H7N9 challenge. Vaccine 32, 355–362 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Margine, I., Martinez-Gil, L., Chou, Y. Y. & Krammer, F. Residual baculovirus in insect cell-derived influenza virus-like particle preparations enhances immunogenicity. PLoS ONE 7, e51559 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. D'Aoust, M. et al. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol. J. 6, 930–940 (2008).

    CAS  PubMed  Google Scholar 

  100. D'Aoust, M. A. et al. The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol. J. 8, 607–619 (2010).

    CAS  PubMed  Google Scholar 

  101. Fries, L. F., Smith, G. E. & Glenn, G. M. A recombinant viruslike particle influenza A (H7N9) vaccine. N. Engl. J. Med. 369, 2564–2566 (2013).

    CAS  PubMed  Google Scholar 

  102. Landry, N. et al. Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS ONE 5, e15559 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ledgerwood, J. E. et al. Influenza virus H5 DNA vaccination is immunogenic by intramuscular and intradermal routes in humans. Clin. Vaccine Immunol. 19, 1792–1797 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Tripp, R. A. & Tompkins, S. M. Virus-vectored influenza virus vaccines. Viruses 6, 3055–3079 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rimmelzwaan, G. F. & Sutter, G. Candidate influenza vaccines based on recombinant modified vaccinia virus Ankara. Expert Rev. Vaccines 8, 447–454 (2009).

    CAS  PubMed  Google Scholar 

  106. Kreijtz, J. H. et al. Evaluation of a modified vaccinia virus Ankara (MVA)-based candidate pandemic influenza A/H1N1 vaccine in the ferret model. J. Gen. Virol. 91, 2745–2752 (2010).

    CAS  PubMed  Google Scholar 

  107. Altenburg, A. F. et al. Modified vaccinia virus Ankara (MVA) as production platform for vaccines against influenza and other viral respiratory diseases. Viruses 6, 2735–2761 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kreijtz, J. H. et al. Recombinant modified vaccinia virus Ankara expressing the hemagglutinin gene confers protection against homologous and heterologous H5N1 influenza virus infections in macaques. J. Infect. Dis. 199, 405–413 (2009).

    CAS  PubMed  Google Scholar 

  109. Kreijtz, J. H. et al. A single immunization with an MVA-based influenza virus H7 vaccine affords protection in the H7N9 pneumonia ferret model. J. Infect. Dis. http://dx.doi.org/10.1093/infdis/jiu528 (2014).

  110. Prabakaran, M. et al. Progress toward a universal H5N1 vaccine: a recombinant modified vaccinia virus Ankara-expressing trivalent hemagglutinin vaccine. PLoS ONE 9, e107316 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. Kreijtz, J. H. et al. Safety and immunogenicity of a modified-vaccinia-virus-Ankara-based influenza A H5N1 vaccine: a randomised, double-blind phase 1/2a clinical trial. Lancet Infect. Dis. 14, 1196–1207 (2014).

    CAS  PubMed  Google Scholar 

  112. Wrammert, J. et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med. 208, 181–193 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Wrammert, J. et al. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453, 667–671 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Moody, M. A. et al. H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination. PLoS ONE 6, e25797 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Throsby, M. et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS ONE 3, e3942 (2008).

    PubMed  PubMed Central  Google Scholar 

  116. Sui, J. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nature Struct. Mol. Biol. 16, 265–273 (2009).

    CAS  Google Scholar 

  117. Corti, D. et al. Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J. Clin. Invest. 120, 1663–1673 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Okuno, Y., Isegawa, Y., Sasao, F. & Ueda, S. A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J. Virol. 67, 2552–2558 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kashyap, A. K. et al. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies. Proc. Natl Acad. Sci. USA 105, 5986–5991 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wan, H. et al. Molecular basis for broad neuraminidase immunity: conserved epitopes in seasonal and pandemic H1N1 as well as H5N1 influenza viruses. J. Virol. 87, 9290–9300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Krause, J. C. et al. A broadly neutralizing human monoclonal antibody that recognizes a conserved, novel epitope on the globular head of the influenza H1N1 virus hemagglutinin. J. Virol. 85, 10905–10908 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Krause, J. C. et al. Human monoclonal antibodies to pandemic 1957 H2N2 and pandemic 1968 H3N2 influenza viruses. J. Virol. 86, 6334–6340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ekiert, D. C. et al. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489, 526–532 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Whittle, J. R. et al. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc. Natl Acad. Sci. USA 108, 14216–14221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Ohshima, N. et al. Naturally occurring antibodies in a human can neutralize a broad spectrum of influenza strains including H3, H1, H2 and H5. J. Virol. 85, 11048–11057 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ekiert, D. C. et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Friesen, R. H. et al. A common solution to group 2 influenza virus neutralization. Proc. Natl Acad. Sci. USA 111, 445–450 (2014).

    CAS  PubMed  Google Scholar 

  128. Ekiert, D. C. et al. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333, 843–850 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Tan, G. S. et al. Characterization of a broadly neutralizing monoclonal antibody that targets the fusion domain of group 2 influenza A virus hemagglutinin. J. Virol. 88, 13580–13592 (2014).

    PubMed  PubMed Central  Google Scholar 

  130. Tan, G. S. et al. A pan-h1 anti-hemagglutinin monoclonal antibody with potent broad-spectrum efficacy in vivo. J. Virol. 86, 6179–6188 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, T. T. et al. Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins. PLoS Pathog. 6, e1000796 (2010).

  132. Dreyfus, C. et al. Highly conserved protective epitopes on influenza B viruses. Science 337, 1343–1348 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011).

    CAS  PubMed  Google Scholar 

  134. Nakamura, G. et al. An in vivo human-plasmablast enrichment technique allows rapid identification of therapeutic influenza A antibodies. Cell Host Microbe 14, 93–103 (2013).

    CAS  PubMed  Google Scholar 

  135. Krammer, F. et al. A carboxy-terminal trimerization domain stabilizes conformational epitopes on the stalk domain of soluble recombinant hemagglutinin substrates. PLoS ONE 7, e43603 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Harris, A. K. et al. Structure and accessibility of HA trimers on intact 2009 H1N1 pandemic influenza virus to stem region-specific neutralizing antibodies. Proc. Natl Acad. Sci. USA 110, 4592–4597 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Brandenburg, B. et al. Mechanisms of hemagglutinin targeted influenza virus neutralization. PLoS ONE 8, e80034 (2013).

    PubMed  PubMed Central  Google Scholar 

  138. Terajima, M. et al. Complement-dependent lysis of influenza A virus-infected cells by broadly cross-reactive human monoclonal antibodies. J. Virol. 85, 13463–13467 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Dilillo, D. J., Tan, G. S., Palese, P. & Ravetch, J. V. Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo. Nature Med. 20, 143–151 (2014).

    CAS  PubMed  Google Scholar 

  140. Jegaskanda, S., Weinfurter, J. T., Friedrich, T. C. & Kent, S. J. Antibody-dependent cellular cytotoxicity is associated with control of pandemic H1N1 influenza virus infection of macaques. J. Virol. 87, 5512–5522 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Jegaskanda, S. et al. Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity antibodies in the absence of neutralizing antibodies. J. Immunol. 190, 1837–1848 (2013).

    CAS  PubMed  Google Scholar 

  142. Jegaskanda, S., Reading, P. C. & Kent, S. J. Influenza-specific antibody-dependent cellular cytotoxicity: toward a universal influenza vaccine. J. Immunol. 193, 469–475 (2014).

    CAS  PubMed  Google Scholar 

  143. Margine, I. et al. H3N2 influenza virus infection induces broadly reactive hemagglutinin stalk antibodies in humans and mice. J. Virol. 87, 4728–4737 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Krammer, F., Pica, N., Hai, R., Tan, G. S. & Palese, P. Hemagglutinin stalk-reactive antibodies are boosted following sequential infection with seasonal and pandemic H1N1 influenza virus in mice. J. Virol. 86, 10302–10307 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Miller, M. S. et al. Neutralizing antibodies against previously encountered influenza virus strains increase over time: a longitudinal analysis. Sci. Transl. Med. 5, 198ra107 (2013).

    PubMed  PubMed Central  Google Scholar 

  146. Pica, N. et al. Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses. Proc. Natl Acad. Sci. USA 109, 2573–2578 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Thomson, C. A. et al. Pandemic H1N1 influenza infection and vaccination in humans induces cross-protective antibodies that target the hemagglutinin stem. Front. Immunol. 3, 87 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Miller, M. S. et al. 1976 and 2009 H1N1 influenza virus vaccines boost anti-hemagglutinin stalk antibodies in humans. J. Infect. Dis. 207, 98–105 (2013).

    CAS  PubMed  Google Scholar 

  149. Sangster, M. Y. et al. B cell response and hemagglutinin stalk-reactive antibody production in different age cohorts following 2009 H1N1 influenza virus vaccination. Clin. Vaccine Immunol. 20, 867–876 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Whittle, J. R. et al. Flow cytometry reveals that H5N1 vaccination elicits cross-reactive stem-directed antibodies from multiple Ig heavy-chain lineages. J. Virol. 88, 4047–4057 (2014).

    PubMed  PubMed Central  Google Scholar 

  151. Hensley, S. E. Challenges of selecting seasonal influenza vaccine strains for humans with diverse pre-exposure histories. Curr. Opin. Virol. 8, 85–89 (2014).

    CAS  PubMed  Google Scholar 

  152. Li, Y. et al. Immune history shapes specificity of pandemic H1N1 influenza antibody responses. J. Exp. Med. 210, 1493–1500 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wohlbold, T. J. & Krammer, F. In the shadow of hemagglutinin: a growing interest in influenza viral neuraminidase and its role as a vaccine antigen. Viruses 6, 2465–2494 (2014).

    PubMed  PubMed Central  Google Scholar 

  154. Doyle, T. M. et al. A monoclonal antibody targeting a highly conserved epitope in influenza B neuraminidase provides protection against drug resistant strains. Biochem. Biophys. Res. Commun. 441, 226–229 (2013).

    CAS  PubMed  Google Scholar 

  155. Doyle, T. M. et al. Universal anti-neuraminidase antibody inhibiting all influenza A subtypes. Antiviral Res. 100, 567–574 (2013).

    CAS  PubMed  Google Scholar 

  156. Tate, M. D. et al. Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 6, 1294–1316 (2014).

    PubMed  PubMed Central  Google Scholar 

  157. Medina, R. A. et al. Glycosylations in the globular head of the hemagglutinin protein modulate the virulence and antigenic properties of the H1N1 influenza viruses. Sci. Transl. Med. 5, 187ra70 (2013).

    PubMed  PubMed Central  Google Scholar 

  158. Wang, C. C. et al. Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc. Natl Acad. Sci. USA 106, 18137–18142 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Chen, J. R. et al. Vaccination of monoglycosylated hemagglutinin induces cross-strain protection against influenza virus infections. Proc. Natl Acad. Sci. USA 111, 2476–2481 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Magadán, J. G. et al. Biogenesis of influenza A virus hemagglutinin cross-protective stem epitopes. PLoS Pathog. 10, e1004204 (2014).

    PubMed  PubMed Central  Google Scholar 

  161. An, Y. et al. Comparative glycomics analysis of influenza hemagglutinin (H5N1) produced in vaccine relevant cell platforms. J. Proteome Res. 12, 3707–3720 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Palmberger, D., Ashjaei, K., Strell, S., Hoffmann-Sommergruber, K. & Grabherr, R. Minimizing fucosylation in insect cell-derived glycoproteins reduces binding to IgE antibodies from the sera of patients with allergy. Biotechnol. J. 9, 1206–1214 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Eggink, D., Goff, P. H. & Palese, P. Guiding the immune response against influenza virus hemagglutinin toward the conserved stalk domain by hyperglycosylation of the globular head domain. J. Virol. 88, 699–704 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. Lin, S. C., Lin, Y. F., Chong, P. & Wu, S. C. Broader neutralizing antibodies against H5N1 viruses using prime-boost immunization of hyperglycosylated hemagglutinin DNA and virus-like particles. PLoS ONE 7, e39075 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Lin, S. C., Liu, W. C., Jan, J. T. & Wu, S. C. Glycan masking of hemagglutinin for adenovirus vector and recombinant protein immunizations elicits broadly neutralizing antibodies against H5N1 avian influenza viruses. PLoS ONE 9, e92822 (2014).

    PubMed  PubMed Central  Google Scholar 

  166. Graves, P. N., Schulman, J. L., Young, J. F. & Palese, P. Preparation of influenza virus subviral particles lacking the HA1 subunit of hemagglutinin: unmasking of cross-reactive HA2 determinants. Virology 126, 106–116 (1983).

    CAS  PubMed  Google Scholar 

  167. Sagawa, H., Ohshima, A., Kato, I., Okuno, Y. & Isegawa, Y. The immunological activity of a deletion mutant of influenza virus haemagglutinin lacking the globular region. J. Gen. Virol. 77, 1483–1487 (1996).

    CAS  PubMed  Google Scholar 

  168. Steel, J. et al. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio 1, e00018-10 (2010).

    PubMed  PubMed Central  Google Scholar 

  169. Bommakanti, G. et al. Design of an HA2-based Escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge. Proc. Natl Acad. Sci. USA 107, 13701–13706 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Bommakanti, G. et al. Design of Escherichia coli-expressed stalk domain immunogens of H1N1 hemagglutinin that protect mice from lethal challenge. J. Virol. 86, 13434–13444 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Mallajosyula, V. V. et al. Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proc. Natl Acad. Sci. USA 111, E2514–E2523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Lu, Y., Welsh, J. P. & Swartz, J. R. Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc. Natl Acad. Sci. USA 111, 125–130 (2014).

    CAS  PubMed  Google Scholar 

  173. Staneková, Z. et al. Heterosubtypic protection against influenza A induced by adenylate cyclase toxoids delivering conserved HA2 subunit of hemagglutinin. Antiviral Res. 97, 24–35 (2013).

    PubMed  Google Scholar 

  174. Stropkovská, A. et al. Broadly cross-reactive monoclonal antibodies against HA2 glycopeptide of influenza A virus hemagglutinin of H3 subtype reduce replication of influenza A viruses of human and avian origin. Acta Virol. 53, 15–20 (2009).

    PubMed  Google Scholar 

  175. Hai, R. et al. Influenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypes. J. Virol. 86, 5774–5781 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Krammer, F. & Palese, P. Influenza virus hemagglutinin stalk-based antibodies and vaccines. Curr. Opin. Virol. 3, 521–530 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Krammer, F. et al. Assessment of influenza virus hemagglutinin stalk-based immunity in ferrets. J. Virol. 88, 3432–3442 (2014).

    PubMed  PubMed Central  Google Scholar 

  178. Krammer, F., Pica, N., Hai, R., Margine, I. & Palese, P. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J. Virol. 87, 6542–6550 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Krammer, F. et al. H3 stalk-based chimeric hemagglutinin influenza virus constructs protect mice from H7N9 challenge. J. Virol. 88, 2340–2343 (2014).

    PubMed  PubMed Central  Google Scholar 

  180. Margine, I. et al. Hemagglutinin stalk-based universal vaccine constructs protect against group 2 influenza A viruses. J. Virol. 87, 10435–10446 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Goff, P. H. et al. Adjuvants and immunization strategies to induce influenza virus hemagglutinin stalk antibodies. PLoS ONE 8, e79194 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Weaver, E. A., Rubrum, A. M., Webby, R. J. & Barry, M. A. Protection against divergent influenza H1N1 virus by a centralized influenza hemagglutinin. PLoS ONE 6, e18314 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Kirchenbaum, G. A. & Ross, T. M. Eliciting broadly protective antibody responses against influenza. Curr. Opin. Immunol. 28, 71–76 (2014).

    CAS  PubMed  Google Scholar 

  184. Ducatez, M. F. et al. Feasibility of reconstructed ancestral H5N1 influenza viruses for cross-clade protective vaccine development. Proc. Natl Acad. Sci. USA 108, 349–354 (2011).

    CAS  PubMed  Google Scholar 

  185. Giles, B. M. & Ross, T. M. Computationally optimized antigens to overcome influenza viral diversity. Expert Rev. Vaccines 11, 267–269 (2012).

    CAS  PubMed  Google Scholar 

  186. Giles, B. M., Bissel, S. J., Dealmeida, D. R., Wiley, C. A. & Ross, T. M. Antibody breadth and protective efficacy are increased by vaccination with computationally optimized hemagglutinin but not with polyvalent hemagglutinin-based H5N1 virus-like particle vaccines. Clin. Vaccine Immunol. 19, 128–139 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Giles, B. M. & Ross, T. M. A computationally optimized broadly reactive antigen (COBRA) based H5N1 VLP vaccine elicits broadly reactive antibodies in mice and ferrets. Vaccine 29, 3043–3054 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Giles, B. M. et al. A computationally optimized hemagglutinin virus-like particle vaccine elicits broadly reactive antibodies that protect nonhuman primates from H5N1 infection. J. Infect. Dis. 205, 1562–1570 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Kilbourne, E. D., Johansson, B. E. & Grajower, B. Independent and disparate evolution in nature of influenza A virus hemagglutinin and neuraminidase glycoproteins. Proc. Natl Acad. Sci. USA 87, 786–790 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Abed, Y., Hardy, I., Li, Y. & Boivin, G. Divergent evolution of hemagglutinin and neuraminidase genes in recent influenza A:H3N2 viruses isolated in Canada. J. Med. Virol. 67, 589–595 (2002).

    CAS  PubMed  Google Scholar 

  191. Westgeest, K. B. et al. Genetic evolution of the neuraminidase of influenza A (H3N2) viruses from 1968 to 2009 and its correspondence to haemagglutinin evolution. J. Gen. Virol. 93, 1996–2007 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Sultana, I. et al. Stability of neuraminidase in inactivated influenza vaccines. Vaccine 32, 2225–2230 (2014).

    CAS  PubMed  Google Scholar 

  193. Couch, R. B., Kasel, J. A., Gerin, J. L., Schulman, J. L. & Kilbourne, E. D. Induction of partial immunity to influenza by a neuraminidase-specific vaccine. J. Infect. Dis. 129, 411–420 (1974).

    CAS  PubMed  Google Scholar 

  194. Johansson, B. E., Moran, T. M. & Kilbourne, E. D. Antigen-presenting B cells and helper T cells cooperatively mediate intravirionic antigenic competition between influenza A virus surface glycoproteins. Proc. Natl Acad. Sci. USA 84, 6869–6873 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Johansson, B. E. & Kilbourne, E. D. Dissociation of influenza virus hemagglutinin and neuraminidase eliminates their intravirionic antigenic competition. J. Virol. 67, 5721–5723 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Johansson, B. E. & Kilbourne, E. D. Immunization with purified N1 and N2 influenza virus neuraminidases demonstrates cross-reactivity without antigenic competition. Proc. Natl Acad. Sci. USA 91, 2358–2361 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Kilbourne, E. D. et al. Purified influenza A virus N2 neuraminidase vaccine is immunogenic and non-toxic in humans. Vaccine 13, 1799–1803 (1995).

    CAS  PubMed  Google Scholar 

  198. Easterbrook, J. D. et al. Protection against a lethal H5N1 influenza challenge by intranasal immunization with virus-like particles containing 2009 pandemic H1N1 neuraminidase in mice. Virology 432, 39–44 (2012).

    CAS  PubMed  Google Scholar 

  199. Kilbourne, E. D., Cerini, C. P., Khan, M. W., Mitchell, J. W. & Ogra, P. L. Immunologic response to the influenza virus neuraminidase is influenced by prior experience with the associated viral hemagglutinin. I. Studies in human vaccinees. J. Immunol. 138, 3010–3013 (1987).

    CAS  PubMed  Google Scholar 

  200. Schotsaert, M., De Filette, M., Fiers, W. & Saelens, X. Universal M2 ectodomain-based influenza A vaccines: preclinical and clinical developments. Expert Rev. Vaccines 8, 499–508 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Neirynck, S. et al. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nature Med. 5, 1157–1163 (1999).

    CAS  PubMed  Google Scholar 

  202. De Filette, M. et al. An influenza A vaccine based on tetrameric ectodomain of matrix protein 2. J. Biol. Chem. 283, 11382–11387 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Wang, L. et al. Nanoclusters self-assembled from conformation-stabilized influenza M2e as broadly cross-protective influenza vaccines. Nanomedicine 10, 473–482 (2014).

    PubMed  Google Scholar 

  204. Huleatt, J. et al. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine 26, 201–214 (2008).

    CAS  PubMed  Google Scholar 

  205. De Filette, M. et al. Universal influenza A vaccine: optimization of M2-based constructs. Virology 337, 149–161 (2005).

    CAS  PubMed  Google Scholar 

  206. Ebrahimi, S. M., Dabaghian, M., Tebianian, M. & Jazi, M. H. In contrast to conventional inactivated influenza vaccines, 4xM2e. HSP70c fusion protein fully protected mice against lethal dose of H1, H3 and H9 influenza A isolates circulating in Iran. Virology 430, 63–72 (2012).

    CAS  PubMed  Google Scholar 

  207. El Bakkouri, K. et al. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. J. Immunol. 186, 1022–1031 (2011).

    CAS  PubMed  Google Scholar 

  208. Ramos, E. L. et al. Efficacy and safety of treatment with an anti-M2e monoclonal antibody in experimental human influenza. J. Infect. Dis. http://dx.doi.org/10.1093/infdis/jiu539 (2014).

  209. Berthoud, T. K. et al. Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic influenza A vaccine, MVA–NP+M1. Clin. Infect. Dis. 52, 1–7 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Antrobus, R. D. et al. A T cell-inducing influenza vaccine for the elderly: safety and immunogenicity of MVA–NP+M1 in adults aged over 50 years. PLoS ONE 7, e48322 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Lillie, P. J. et al. Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA–NP+M1, in humans. Clin. Infect. Dis. 55, 19–25 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Mullarkey, C. E. et al. Improved adjuvanting of seasonal influenza vaccines: preclinical studies of MVA–NP+M1 coadministration with inactivated influenza vaccine. Eur. J. Immunol. 43, 1940–1952 (2013).

    CAS  PubMed  Google Scholar 

  213. Antrobus, R. D. et al. Coadministration of seasonal influenza vaccine and MVA–NP+M1 simultaneously achieves potent humoral and cell-mediated responses. Mol. Ther. 22, 233–238 (2014).

    CAS  PubMed  Google Scholar 

  214. Lambe, T. et al. Immunity against heterosubtypic influenza virus induced by adenovirus and MVA expressing nucleoprotein and matrix protein-1. Sci. Rep. 3, 1443 (2013).

    PubMed  PubMed Central  Google Scholar 

  215. Valkenburg, S. A. et al. IL-15 adjuvanted multivalent vaccinia-based universal influenza vaccine requires CD4+ T cells for heterosubtypic protection. Proc. Natl Acad. Sci. USA 111, 5676–5681 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Baker, S. F. et al. Protection against lethal influenza with a viral mimic. J. Virol. 87, 8591–8605 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Yang, C., Skiena, S., Futcher, B., Mueller, S. & Wimmer, E. Deliberate reduction of hemagglutinin and neuraminidase expression of influenza virus leads to an ultraprotective live vaccine in mice. Proc. Natl Acad. Sci. USA 110, 9481–9486 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Powell, T. J., Silk, J. D., Sharps, J., Fodor, E. & Townsend, A. R. Pseudotyped influenza A virus as a vaccine for the induction of heterotypic immunity. J. Virol. 86, 13397–13406 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Wang, T. T. et al. Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc. Natl Acad. Sci. USA 107, 18979–18984 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Staneková, Z. et al. Heterosubtypic protective immunity against influenza A virus induced by fusion peptide of the hemagglutinin in comparison to ectodomain of M2 protein. Acta Virol. 55, 61–67 (2011).

    PubMed  Google Scholar 

  221. Janulíková, J., Staneková, Z., Mucha, V., Kostolanský, F. & Varecková, E. Two distinct regions of HA2 glycopolypeptide of influenza virus hemagglutinin elicit cross-protective immunity against influenza. Acta Virol. 56, 169–176 (2012).

    PubMed  Google Scholar 

  222. Atsmon, J. et al. Safety and immunogenicity of multimeric-001—a novel universal influenza vaccine. J. Clin. Immunol. 32, 595–603 (2012).

    CAS  PubMed  Google Scholar 

  223. Atsmon, J. et al. Priming by a novel universal influenza vaccine (multimeric-001)—a gateway for improving immune response in the elderly population. Vaccine 32, 5816–5823 (2014).

    CAS  PubMed  Google Scholar 

  224. Sridhar, S. et al. Cellular immune correlates of protection against symptomatic pandemic influenza. Nature Med. 19, 1305–1312 (2013).

    CAS  PubMed  Google Scholar 

  225. Hillaire, M. L. et al. Cross-protective immunity against influenza pH1N1 2009 viruses induced by seasonal influenza A (H3N2) virus is mediated by virus-specific T-cells. J. Gen. Virol. 92, 2339–2349 (2011).

    CAS  PubMed  Google Scholar 

  226. van de Sandt, C. E. et al. Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus. J. Virol. 88, 1684–1693 (2013).

    PubMed  Google Scholar 

  227. World Health Organization. Pandemic influenza vaccine manufacturing process and timeline. World Health Organization [online], (2009).

  228. Lee, P. S. et al. Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus. Nature Commun. 5, 3614 (2014).

    Google Scholar 

  229. Li, Q. et al. The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nature Struct. Mol. Biol. 17, 1266–1268 (2010).

    CAS  Google Scholar 

  230. Bohne-Lang, A. & von der Lieth, C. W. GlyProt: in silico glycosylation of proteins. Nucleic Acids Res. 33, W214–W219 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Gamblin, S. et al. The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303, 1838–1842 (2004).

    CAS  PubMed  Google Scholar 

  232. Xu, X., Zhu, X., Dwek, R. A., Stevens, J. & Wilson, I. A. Structural characterization of the 1918 influenza virus H1N1 neuraminidase. J. Virol. 82, 10493–10501 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank T. J. Wohlbold for help with GlyProt and PyMOL. Research in the Krammer laboratory is supported by a US National Institutes of Health (NIH) Centres for Excellence in Influenza Research and Surveillance (CEIRS) contract (HHSN272201400008C). P.P. is supported by an NIH CEIRS contract (HHSN272201400008C) and by NIH grants (U19 AI109946 and P01 AI097092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Florian Krammer or Peter Palese.

Ethics declarations

Competing interests

The Icahn School of Medicine at Mount Sinai has filed several patents regarding influenza virus vaccine constructs.

Related links

PowerPoint slides

Glossary

Antigenic drift

A mechanism by which influenza viruses escape from human 'herd immunity'. The RNA-dependent RNA polymerase of influenza viruses is relatively error prone and has no proofreading mechanism, resulting in a high frequency of point mutations. Immunologic pressure in the human population then selects for mutants that can escape from this herd immunity. The globular head domain of haemagglutinin is — owing to its immuno-dominance and high plasticity — most affected by antigenic drift.

Haemagglutinin

(HA). A homotrimeric viral surface glycoprotein that mediates the attachment of influenza viruses to cells by binding to sialic acids on glycan structures of cellular receptors. Haemagglutinin also mediates the fusion of viral and endosomal membranes, which causes the release of the viral genome into the cytosol. Haemagglutinin is the major antigen of the virus.

Neuraminidase

(NA). A viral homotetrameric viral surface glycoprotein with sialidase activity. Neuraminidase helps transport the virus trough mucosal surfaces and mediates the release of budding viruses from the cell surface.

Whole-virus inactivated vaccines

Whole-virus inactivated vaccines are based on intact virions that have been chemically (for example, with formalin or β-propiolactone) or physically (for example, with ultraviolet light) inactivated. Treatment of these virions with detergent leads to split vaccines. Further (partial) purification of the haemagglutinin and neuraminidase of viruses results in subunit vaccines.

Haemagglutination inhibition

(HI). Haemagglutination activity is the standard correlate of protection used for influenza virus vaccines, and haemagglutination inhibition describes the ability of antibodies to block the binding of the haemagglutinin globular head domain to cellular receptors. Stalk-reactive antibodies are generally haemagglutination inhibition negative.

Neuraminidase inhibition

(NI). NI describes the ability of antibodies to block the sialidase function of neuraminidase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krammer, F., Palese, P. Advances in the development of influenza virus vaccines. Nat Rev Drug Discov 14, 167–182 (2015). https://doi.org/10.1038/nrd4529

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrd4529

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology