Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Whole-genome patenting

Abstract

Gene patenting is now a familiar commercial practice, but there is little awareness that several patents claim ownership of the complete genome sequence of a prokaryote or virus. When these patents are analysed and compared to those for other biological entities, it becomes clear that genome patents seek to exploit the genome as an information base and are part of a broader shift towards intangible intellectual property in genomics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Nuffield Council on Bioethics The Ethics of Patenting DNA (Nuffield Council on Bioethics, London, 2002).

  2. Heller, M. A. & Eisenberg, R. S. Can patents deter innovation? The anticommons in biomedical research. Science 280, 698–701 (1998).

    Article  CAS  Google Scholar 

  3. Organisation for Economic Co-operation and Development Genetic Inventions, Intellectual Property Rights, and Licensing Practices: Evidence and Policies (OECD, Paris, 2002).

  4. Gold, E. R. SARS genome patent: symptom or disease? Lancet 361, 2002–2003 (2003).

    Article  Google Scholar 

  5. Gene patents and the public good [Editorial]. Nature 423, 207 (2003).

  6. Demaine, L. J. & Fellmeth, A. X. Natural substances and patentable inventions. Science 300, 1375–1376 (2003).

    Article  CAS  Google Scholar 

  7. Barton, J. H. Reforming the patent system. Science 287, 1933–1934 (2000).

    Article  CAS  Google Scholar 

  8. US Patent and Trademarks Office Utility examination guidelines. Fed. Regist. 66, 1092–1099 (2001).

  9. Cornish, W. R., Llewellyn M. & Adcock, M. Intellectual Property Rights and Genetics: a Study into the Impact and Management of Intellectual Property Rights Within the Healthcare System (Public Health Genet. Unit, Cambridge, 2003).

    Google Scholar 

  10. Human Genome Sciences 1996 Annual Report (Human Genome Sciences, Rockville, Maryland, 1997).

  11. Shreeve, J. The Genome War (Knopf, New York, 2004).

    Google Scholar 

  12. Barton, J. H. Patents, genomics, research and other diagnostics. Acad. Med. 77, 1339–1347 (2002).

    Article  Google Scholar 

  13. US Supreme Court. Diamond v. Chakrbarty 447, US 303 (US Reports, 1980).

  14. World Trade Organization. The Results of the Uruguay Round of Multilateral Trade Negotiations: the Legal Texts (Cambridge Univ. Press, Cambridge, 1999).

  15. Stetter, K. O. Thermococcus AV4 and enzymes produced by the same. USPTO 5,714,373 (US Patent and Trademark Office, 1998).

    Google Scholar 

  16. Triplett, E. W. Microorganisms. USPTO 5,908,758 (US Patent and Trademark Office, 1999).

    Google Scholar 

  17. Bottone, E., J. & Peluso, R. Bacillus pumilus strain. USPTO 6,090,613 (US Patent and Trademark Office, 2000).

  18. Jones, B. E. et al. Thermopallium bacteria and enzymes obtainable therefrom. USPTO 6,218,164 (US Patent and Trademark Office, 2001).

  19. Jones, B. E. & Grant, W. D. (Genencor International, Inc.) Haloalkaliphilic microorganisms. USPTO 6,420,147 (US Patent and Trademark Office, 2002).

    Google Scholar 

  20. Bradfisch, G. A., Schenpf, H. E. & Kim, L. Bacillus thuringiensis isolates active against weevils. USPTO 6,605,462 (US Patent and Trademark Office, 2003).

  21. Banfield, J. F. et al. Acidophile archaeal organism. USPTO 6,589,772 (US Patent and Trademark Office 2003).

    Google Scholar 

  22. Kelves, D. J. A History of Patenting Life in the United States with Comparative Attention to Europe and Canada (citation of Judge G.S. Rich's published legal opinion therein) 20 (Office for Official Publications of the European Communities, Luxembourg, 2002).

    Google Scholar 

  23. Eisenberg, R. S. Re-examining the role of patents in appropriating the value of DNA sequences. Emory Law J. 49, 783–800 (2000).

    CAS  PubMed  Google Scholar 

  24. Maschio, T. & Kowalski, T. Bioinformatics — a patenting view. Trends Biotechnol. 19, 334–339 (2001).

    Article  CAS  Google Scholar 

  25. Butler, D. Are you ready for the revolution? Nature 409, 758–760 (2001).

    Article  CAS  Google Scholar 

  26. Bostyn, S. J. R. Living in an (imm)material world: bioinformatics and intellectual property protection. J. Int. Biotechnol. Law 1, 2–10 (2004).

    Google Scholar 

  27. Walsh, J. P., Arora, A. & Cohen, W. M. in Patents in the Knowledge-Based Economy (eds Cohen, W. M. & Merrill, S. A.) 285–340 (National Academies Press, Washington DC, 2003).

    Google Scholar 

  28. Resnik, D. B. DNA patents and scientific discovery and innovation: assessing benefits and risks. Sci. Eng. Ethics 7, 29–62 (2001).

    Article  CAS  Google Scholar 

  29. Resnik, D. B. DNA patents and human dignity. J. Law Med. Ethics 29, 152–165 (2001).

    Article  CAS  Google Scholar 

  30. Perry, M. Lifeform patents: the high and the low. J. Int. Biotechnol. Law 1, 20–27 (2004).

    Article  Google Scholar 

  31. Lawrence, J. G., Hatfull, G. F. & Hendrix, R. W. Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J. Bacteriol. 184, 4891–4905 (2002).

    Article  CAS  Google Scholar 

  32. Gogarten, J. P., Doolittle, W. F. & Lawrence, J. G. Prokaryotic evolution in the light of gene transfer. Mol. Biol. Evol. 19, 2226–2238 (2002).

    Article  CAS  Google Scholar 

  33. Seiki, M., Hattori, S., Hirayama, Y. & Yoshida M. Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc. Natl Acad. Sci. USA 80, 3618–3622 (1983).

    Article  CAS  Google Scholar 

  34. Kato, N. et al. Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc. Natl Acad. Sci. USA 87, 9524–9528 (1990).

    Article  CAS  Google Scholar 

  35. Pitcovski, J. et al. The complete DNA sequence and genome organization of the avian adenovirus, hemorrhagic enteris virus. Virology 249, 307–315 (1998).

    Article  CAS  Google Scholar 

  36. Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp APS. Nature 407, 81–86 (2000).

    Article  CAS  Google Scholar 

  37. Reddick, B. B., Habera, L. F. & Law, M. D. Nucleotide sequence and taxonomy of maize chlorotic dwarf virus within the Sequiviridae. J. Gen. Virol. 78, 1165–1174 (1997).

    Article  CAS  Google Scholar 

  38. de Haan, P., Wagemakers, L., Peters, D. & Goldbach, R. The S RNA segment of tomato spotted wilt virus has an ambisense character. J. Gen. Virol. 71, 1001–1007 (1990).

    Article  CAS  Google Scholar 

  39. de Haan, P. et al. Tomato spotted wilt virus encodes a putative RNA polymerase. J. Gen. Virol. 72, 2207–2216 (1991).

    Article  CAS  Google Scholar 

  40. Kormelink, R., de Haan, P., Meurs, C., Peters, D. & Goldbach, R. The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segements. J. Gen. Virol. 73, 2795–2804 (1992).

    Article  CAS  Google Scholar 

  41. Fraser, C. M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).

    Article  CAS  Google Scholar 

  42. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

    Article  CAS  Google Scholar 

  43. Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank W.F. Doolittle and two anonymous referees for several useful suggestions. The research for this paper was supported by the Economic and Social Research Council (ESRC), UK, as part of the programme of the ESRC's Centre for Genomics in Society (Egenis). A.B. also acknowledges a travel grant from the Chemical Heritage Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen A. O'Malley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Egenis web site

esp@cenet

European Patent Office

EPO Online Public File Inspection web page

US Patent and Trademark Office

World Health Organization — Patent Applications for SARS Virus and Genes

Glossary

BIOREMEDIATION

The use of microorganisms to degrade hazardous contaminants in soil and water to environmentally safe levels.

CORONAVIRUS

A genus of virus named after the projections that create a crown-effect around the outside of each virus particle. They infect various mammals and birds, causing respiratory and enteric illness. The SARS-associated coronavirus is a previously unrecognized member of the genus with no close genetic relationship to known coronavirus sequences.

ONCOMOUSE

(Also known as the Harvard mouse.) A type of laboratory mouse that is genetically modified to carry genes that increase susceptibility to cancer (oncogenes).

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Malley, M., Bostanci, A. & Calvert, J. Whole-genome patenting. Nat Rev Genet 6, 502–506 (2005). https://doi.org/10.1038/nrg1613

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrg1613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing