Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signature-tagged mutagenesis: barcoding mutants for genome-wide screens

Key Points

  • In signature-tagged mutagenesis (STM), molecular barcoding allows high-throughput screens by identifying mutants with reduced or increased adaptation to certain environments.

  • STM has undergone many technical adaptations and improvements since its invention in 1995. These include the use of pre-selected tags, different types of mutagen, and labelling techniques and high-density arrays for hybridization analysis. Related techniques such as TraSH, MATT and DeADMAn use DNA sequences that flank transposon insertions as signature tags.

  • The majority of STM studies have been carried out on pathogenic bacteria, and these have resulted in a wealth of insights into a broad range of virulence processes. Screens have also been carried out to identify host- and tissue-specific virulence factors, and with immune-deficient mouse strains to uncover genes encoding proteins that protect the pathogen against specific host immune mechanisms.

  • Signature tags were incorporated into genomes of strains in the Saccharomyces cerevisiae deletion mutant collection. The collection has been subjected to numerous screens, which have identified thousands of genes that are involved in diverse metabolic processes. The yeast deletion mutant library can also be screened for other characteristics such as haploinsufficiency, chemical sensitivity and synthetic lethality.

  • Recently, signature tagging has been used in conjunction with small interfering RNA screens in diploid mammalian cells. This approach has already led to the discovery of a novel tumour suppressor, and offers considerable potential for large-scale analysis of mammalian gene function.

Abstract

DNA signature tags (molecular barcodes) facilitate functional screens by identifying mutants in mixed populations that have a reduced or increased adaptation to a particular environment. Many innovative adaptations and refinements in the technology have been described since its original use with Salmonella; they have yielded a wealth of information on a broad range of biological processes — mainly in bacteria, but also in yeast and other fungi, viruses, parasites and, most recently, in mammalian cells. By combining whole-genome microarrays and comprehensive ordered libraries of mutants, high-throughput functional screens can now be achieved on a genomic scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Original signature-tagged mutagenesis of Salmonella.
Figure 2: Methods for generating pools of tagged mutants.
Figure 3: Methods for the detection of signature tags.
Figure 4: Differential STM screen.
Figure 5: RNAi screen with barcoding.

Similar content being viewed by others

References

  1. Smith, V., Botstein, D. & Brown, P. O. Genetic footprinting: a genomic strategy for determining a gene's function given its sequence. Proc. Natl Acad. Sci. USA 92, 6479–6483 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hensel, M. et al. Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403 (1995). The first paper to describe the use of STM. Its application to S. typhimurium led to the discovery of genes that encode a specialized type 3 secretion system that is necessary for virulence in mice.

    Article  CAS  PubMed  Google Scholar 

  3. Mahan, M. J., Slauch, J. M. & Mekalanos, J. J. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259, 686–688 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Mei, J. M., Nourbakhsh, F., Ford, C. W. & Holden, D. W. Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol. Microbiol. 26, 399–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Polissi, A. et al. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66, 5620–5629 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Karlyshev, A. V. et al. Application of high-density array-based signature-tagged mutagenesis to discover novel Yersinia virulence-associated genes. Infect. Immun. 69, 7810–7819 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leigh, S. A., Forman, S., Perry, R. D. & Straley, S. C. Unexpected results from the application of signature-tagged mutagenesis to identify Yersinia pestis genes required for adherence and invasion. Microb. Pathog. 38, 259–266 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Bearson, S. M., Bearson, B. L. & Rasmussen, M. A. Identification of Salmonella enterica serovar Typhimurium genes important for survival in the swine gastric environment. Appl. Environ. Microbiol. 72, 2829–2836 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Shoemaker, D. D., Lashkari, D. A., Morris, D., Mittmann, M. & Davis, R. W. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nature Genet. 14, 450–456 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Giaever, G. et al. Genomic profiling of drug sensitivities via induced haploinsufficiency. Nature Genet. 21, 278–283 (1999). Signature-tagged heterozygous yeast strains were used to screen for drug sensitivities that were caused by the loss of one allele (haploinsufficiency).

    Article  CAS  PubMed  Google Scholar 

  12. Groh, J. L., Luo, Q., Ballard, J. D. & Krumholz, L. R. A method adapting microarray technology for signature-tagged mutagenesis of Desulfovibrio desulfuricans G20 and Shewanella oneidensis MR-1 in anaerobic sediment survival experiments. Appl. Environ. Microbiol. 71, 7064–7074 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002). This paper describes a systematic construction of a nearly complete collection of tagged yeast mutants and their use with DNA microarrays to determine the abundance of each deletion strain in mixed populations.

    Article  CAS  PubMed  Google Scholar 

  14. Lehoux, D. E., Sanschagrin, F. & Levesque, R. C. Defined oligonucleotide tag pools and PCR screening in signature-tagged mutagenesis of essential genes from bacteria. Biotechniques 26, 473–478, 480 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Potvin, E. et al. In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ. Microbiol. 5, 1294–1308 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Hidalgo-Grass, C. et al. A locus of group A Streptococcus involved in invasive disease and DNA transfer. Mol. Microbiol. 46, 87–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Badarinarayana, V. et al. Selection analyses of insertional mutants using subgenic-resolution arrays. Nature Biotechnol. 19, 1060–1065 (2001).

    Article  CAS  Google Scholar 

  18. Sassetti, C. M., Boyd, D. H. & Rubin, E. J. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl Acad. Sci. USA 98, 12712–12717 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salama, N. R., Shepherd, B. & Falkow, S. Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J. Bacteriol. 186, 7926–7935 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lamichhane, G., Tyagi, S. & Bishai, W. R. Designer arrays for defined mutant analysis to detect genes essential for survival of Mycobacterium tuberculosis in mouse lungs. Infect. Immun. 73, 2533–2540 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chan, K., Kim, C. C. & Falkow, S. Microarray-based detection of Salmonella enterica serovar Typhimurium transposon mutants that cannot survive in macrophages and mice. Infect. Immun. 73, 5438–5449 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saenz, H. L. & Dehio, C. Signature-tagged mutagenesis: technical advances in a negative selection method for virulence gene identification. Curr. Opin. Microbiol. 8, 612–619 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Paddison, P. J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004). References 23 and 24 both demonstrate the applicability of STM to RNAi screens, although they use different tagging approaches.

    Article  CAS  PubMed  Google Scholar 

  25. Mecsas, J. Use of signature-tagged mutagenesis in pathogenesis studies. Curr. Opin. Microbiol. 5, 33–37 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Autret, N. & Charbit, A. Lessons from signature-tagged mutagenesis on the infectious mechanisms of pathogenic bacteria. FEMS Microbiol. Rev. 29, 703–717 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Coulter, S. N. et al. Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol. Microbiol. 30, 393–404 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Hava, D. L. & Camilli, A. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45, 1389–1406 (2002). This large-scale screen identified some interesting tissue-specific pneumococcal virulence factors.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsolis, R. M. et al. Identification of a putative Salmonella enterica serotype Typhimurium host range factor with homology to IpaH and YopM by signature-tagged mutagenesis. Infect. Immun. 67, 6385–6393 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Morgan, E. et al. Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 54, 994–1010 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Hisert, K. B. et al. Identification of Mycobacterium tuberculosis counterimmune (cim) mutants in immunodeficient mice by differential screening. Infect. Immun. 72, 5315–5321 (2004). In this interesting paper, STM was used in conjunction with immune-deficient mouse strains to identify 'counter-immune' mutants, in which genes with products that protect the pathogen against specific host immune mechanisms are affected.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hisert, K. B. et al. A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages: role of cyclic diGMP. Mol. Microbiol. 56, 1234–1245 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Birrell, G. W., Giaever, G., Chu, A. M., Davis, R. W. & Brown, J. M. A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity. Proc. Natl Acad. Sci. USA 98, 12608–12613 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Birrell, G. W. et al. Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents. Proc. Natl Acad. Sci. USA 99, 8778–8783 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Game, J. C. et al. Use of a genome-wide approach to identify new genes that control resistance of Saccharomyces cerevisiae to ionizing radiation. Radiat. Res. 160, 14–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Hanway, D. et al. Previously uncharacterized genes in the UV- and MMS-induced DNA damage response in yeast. Proc. Natl Acad. Sci. USA 99, 10605–10610 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deutschbauer, A. M., Williams, R. M., Chu, A. M. & Davis, R. W. Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 99, 15530–15535 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Deutschbauer, A. M. et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ooi, S. L., Shoemaker, D. D. & Boeke, J. D. A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science 294, 2552–2556 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Fleming, J. A. et al. Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341. Proc. Natl Acad. Sci. USA 99, 1461–1466 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wright, R. et al. Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis. Yeast 20, 881–892 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Steinmetz, L. M. et al. Systematic screen for human disease genes in yeast. Nature Genet. 31, 400–404 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Lum, P. Y. et al. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116, 121–137 (2004). Describes the application of a genome-wide barcoding screen in yeast to identify new modes of action for several clinically relevant compounds.

    Article  CAS  PubMed  Google Scholar 

  44. Giaever, G. et al. Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc. Natl Acad. Sci. USA 101, 793–798 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, W. et al. Genome-wide requirements for resistance to functionally distinct DNA-damaging agents. PLoS Genet. 1, 235–246 (2005).

    Article  CAS  Google Scholar 

  46. Brown, J. A. et al. Global analysis of gene function in yeast by quantitative phenotypic profiling. Mol. Syst. Biol. 2, 1–9 (2006).

    Article  CAS  Google Scholar 

  47. Parsons, A. B. et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126, 611–625 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Bender, A. & Pringle, J. R. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 1295–1305 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tong, A. H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Tong, A. H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Ooi, S. L., Shoemaker, D. D. & Boeke, J. D. DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nature Genet. 35, 277–286 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Pan, X. et al. A robust toolkit for functional profiling of the yeast genome. Mol. Cell 16, 487–496 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Cormack, B. P. & Falkow, S. Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. Genetics 151, 979–987 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Las Penas, A. et al. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev. 17, 2245–2258 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roemer, T. et al. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol. Microbiol. 50, 167–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Brown, J. S. et al. Signature-tagged and directed mutagenesis identify PABA synthetase as essential for Aspergillus fumigatus pathogenicity. Mol. Microbiol. 36, 1371–1380 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Nelson, R. T., Hua, J., Pryor, B. & Lodge, J. K. Identification of virulence mutants of the fungal pathogen Cryptococcus neoformans using signature-tagged mutagenesis. Genetics 157, 935–947 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Moorman, N. J., Lin, C. Y. & Speck, S. H. Identification of candidate gammaherpesvirus 68 genes required for virus replication by signature-tagged transposon mutagenesis. J. Virol. 78, 10282–10290 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Song, M. J. et al. Identification of viral genes essential for replication of murine g-herpesvirus 68 using signature-tagged mutagenesis. Proc. Natl Acad. Sci. USA 102, 3805–3810 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Knoll, L. J., Furie, G. L. & Boothroyd, J. C. Adaptation of signature-tagged mutagenesis for Toxoplasma gondii: a negative screening strategy to isolate genes that are essential in restrictive growth conditions. Mol. Biochem. Parasitol. 116, 11–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Sontheimer, E. J. Assembly and function of RNA silencing complexes. Nature Rev. Mol. Cell Biol. 6, 127–138 (2005).

    Article  CAS  Google Scholar 

  62. Westbrook, T. F. et al. A genetic screen for candidate tumor suppressors identifies REST. Cell 121, 837–848 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Brummelkamp, T. R. et al. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nature Chem. Biol. 2, 202–206 (2006).

    Article  CAS  Google Scholar 

  64. Silva, J. M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nature Genet. 37, 1281–1288 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Ngo, V. N. et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441, 106–110 (2006). An excellent example of the fusion of barcoding with RNAi technology, yielding insights into a specific cellular process.

    Article  CAS  PubMed  Google Scholar 

  66. Geoffroy, M. C., Floquet, S., Metais, A., Nassif, X. & Pelicic, V. Large-scale analysis of the meningococcus genome by gene disruption: resistance to complement-mediated lysis. Genome Res. 13, 391–398 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liberati, N. T. et al. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl Acad. Sci. USA 103, 2833–2838 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nord, A. S. et al. The International Gene Trap Consortium Website: a portal to all publicly available gene trap cell lines in mouse. Nucleic Acids Res. 34, D642–D648 (2006).

  69. Beutler, B. et al. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 24, 353–389 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Crozat, K. et al. Analysis of the MCMV resistome by ENU mutagenesis. Mamm. Genome 17, 398–406 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Grant, A. J. et al. Signature-tagged transposon mutagenesis studies demonstrate the dynamic nature of cecal colonization of 2-week-old chickens by Campylobacter jejuni. Appl. Environ. Microbiol. 71, 8031–8041 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sun, D., Melegari, M., Sridhar, S., Rogler, C. E. & Zhu, L. Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques 41, 59–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Xia, X. G., Zhou, H. & Xu, Z. Multiple shRNAs expressed by an inducible pol II promoter can knock down the expression of multiple target genes. Biotechniques 41, 64–68 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Boucrot, E., Henry, T., Borg, J. P., Gorvel, J. P. & Meresse, S. The intracellular fate of Salmonella depends on the recruitment of kinesin. Science 308, 1174–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Kirkpatrick, B. D. et al. Evaluation of Salmonella enterica serovar Typhi (Ty2 aroC-ssaV-) M01ZH09, with a defined mutation in the Salmonella pathogenicity island 2, as a live, oral typhoid vaccine in human volunteers. Vaccine 24, 116–123 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R. Jr. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Camacho, L. R., Ensergueix, D., Perez, E., Gicquel, B. & Guilhot, C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34, 257–267 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Sulzenbacher, G. et al. LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. EMBO J. 25, 1436–1444 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rousseau, C. et al. Production of phthiocerol dimycocerosates protects Mycobacterium tuberculosis from the cidal activity of reactive nitrogen intermediates produced by macrophages and modulates the early immune response to infection. Cell Microbiol. 6, 277–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. West, N. P. et al. Optimization of virulence functions through glucosylation of Shigella LPS. Science 307, 1313–1317 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Hayes, F. Transposon-based strategies for microbial functional genomics and proteomics. Annu. Rev. Genet. 37, 3–29 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Chiang, S. L. & Mekalanos, J. J. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol. Microbiol. 27, 797–805 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Darwin, A. J. & Miller, V. L. Identification of Yersinia enterocolitica genes affecting survival in an animal host using signature-tagged transposon mutagenesis. Mol. Microbiol. 32, 51–62 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Edelstein, P. H., Edelstein, M. A., Higa, F. & Falkow, S. Discovery of virulence genes of Legionella pneumophila by using signature tagged mutagenesis in a guinea pig pneumonia model. Proc. Natl Acad. Sci. USA 96, 8190–8195 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Foulongne, V., Bourg, G., Cazevieille, C., Michaux-Charachon, S. & O'Callaghan, D. Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect. Immun. 68, 1297–1303 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Martindale, J., Stroud, D., Moxon, E. R. & Tang, C. M. Genetic analysis of Escherichia coli K1 gastrointestinal colonization. Mol. Microbiol. 37, 1293–1305 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Sun, Y. H., Bakshi, S., Chalmers, R. & Tang, C. M. Functional genomics of Neisseria meningitidis pathogenesis. Nature Med. 6, 1269–1273 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Kavermann, H. et al. Identification and characterization of Helicobacter pylori genes essential for gastric colonization. J. Exp. Med. 197, 813–822 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Claus, H., Frosch, M. & Vogel, U. Identification of a hotspot for transformation of Neisseria meningitidis by shuttle mutagenesis using signature-tagged transposons. Mol. Gen. Genet. 259, 363–371 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Lau, G. W. et al. A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol. Microbiol. 40, 555–571 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.W.H. is funded by grants from the UK Medical Research Council and the Wellcome Trust. C.B. is funded by the Canadian Institute of Health Research, Genome Canada and Genome Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Holden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Boone Laboratory homepage

Centre for Molecular Microbiology and Infection web site

The Institute for Genomic Research

World Health Organisation

Glossary

Genetic footprinting

A technique in which a large population of cells is subjected to transposon mutagenesis, then divided and subjected to different selective pressures. PCR on individual genes determines the presence or absence of corresponding mutant strains after selection.

Virulence

The degree of pathogenicity, or ability to cause a disease.

Pathogenicity island

A distinct region of the genome, usually with an altered G and C content and containing one or more virulence genes, that was probably acquired by horizontal gene transfer.

Cell envelope

The cell membrane and outer membrane, if one is present, together with the cell wall; Mycobacteria have a very complex cell wall that is rich in glycolipids, especially mycolic acids.

Innate immunity

'General' or 'non-specific' immune responses; the first line of defence against a pathogen.

Adhesins

Molecules that mediate the attachment of an organism to a surface.

Latency

The persistence of a pathogen in the host cell without necessarily causing signs of disease.

Zoonotic

A pathogen that primarily affects animals but is transmissible to humans.

Apicomplexan

A type of protozoan parasite that uses a unique form of actin-based motility and has a complex life cycle.

Small interfering RNAs

Small antisense RNAs (20–25 nucleotides) that are generated from specific dsRNAs that trigger RNAi. They serve as guides for the cleavage of homologous mRNA in the RNA-induced silencing complex.

Short hairpin RNAs

Small RNAs that form hairpins that can induce sequence-specific silencing in mammalian cells through RNAi, when produced exogenously and transfected into the cell or when expressed endogenously.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazurkiewicz, P., Tang, C., Boone, C. et al. Signature-tagged mutagenesis: barcoding mutants for genome-wide screens. Nat Rev Genet 7, 929–939 (2006). https://doi.org/10.1038/nrg1984

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrg1984

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing