Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune surveillance in the skin: mechanisms and clinical consequences

Key Points

  • The skin, together with other epithelial-cell interfaces with a hostile environment, supports a range of passive and active immune defence mechanisms.

  • Cutaneous immune responses serve as a model for the study of interactions between innate and acquired immune mechanisms.

  • Adaptive immune surveillance addresses the logistical challenge of targeting naive, effector and memory T cells to their respective sites of function by using distinct homing mechanisms at different stages of the immune response, termed primary, secondary and tertiary immune surveillance.

  • Primary immune surveillance involves the process by which tissue dendritic cells are induced to engulf foreign particles, undergo maturation and emigrate through the afferent lymphatics to the local draining lymph node, where they encounter naive T cells recruited from the peripheral circulation. This greatly increases the efficiency with which naive T cells are exposed to antigens presented by professional antigen-presenting cells.

  • Secondary immune surveillance involves the production and distribution of antigen-specific effector memory T cells that express homing receptors that direct their migration back to the tissue draining the lymph node where activation occurred and their participation in tissue-based immune responses. The persistence of memory T cells with both antigen and tissue specificity also protects against possible future encounters with the same pathogen, by providing a population of antigen-specific effector cells pre-targeted to the site where exposure to that pathogen might most probably recur.

  • Tertiary immune surveillance involves the production of central memory and effector cells potentially directed to lymph nodes and tissues other than the site of primary exposure, providing broad coverage in the event that the pathogen is encountered through a different route.

  • These concepts have implications for the understanding of both inflammatory skin disorders and the development of antitumour and antipathogen vaccine strategies.

Abstract

The skin, as the primary interface between the body and the environment, provides the first line of defence against a broad array of microbial pathogens and trauma. In addition to its properties as a physical barrier, the skin has many active defence mechanisms. In this review, we discuss the interaction between the innate and adaptive immune systems in the skin as a model for immune function at epithelial-cell interfaces with the environment. How these mechanisms account for the robust nature of cutaneous immune surveillance and how their dysregulation drives the pathogenesis of inflammatory skin disorders and skin-based tumours are the subjects of this review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immune-response elements in non-inflamed skin.
Figure 2: Innate immune mechanisms in the skin.
Figure 3: Adaptive immune responses in the skin.
Figure 4: Immune-surveillance mechanisms in the skin.

Similar content being viewed by others

References

  1. Robert, C. & Kupper, T. S. Inflammatory skin diseases, T cells, and immune surveillance. N. Engl. J. Med. 341, 1817–1828 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Uthayakumar, S., Nandwani, R., Drinkwater, T., Nayagam, A. T. & Darley, C. R. The prevalence of skin disease in HIV infection and its relationship to the degree of immunosuppression. Br. J. Dermatol. 137, 595–598 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Lugo-Janer, G., Sánchez, J. L. & Santiago-Delpin, E. Prevalence and clinical spectrum of skin diseases in kidney transplant recipients. J. Am. Acad. Dermatol. 24, 410–414 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Kadunce, D. P. & Krueger, G. G. Pathogenesis of psoriasis. Dermatol. Clin. 13, 723–737 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Leung, D. Y. Atopic dermatitis: immunobiology and treatment with immune modulators. Clin. Exp. Immunol. 107 Suppl. 1, 25–30 (1997).

    CAS  PubMed  Google Scholar 

  6. Galli, E. et al. Atopic dermatitis: molecular mechanisms, clinical aspects and new therapeutical approaches. Curr. Mol. Med. 3, 127–138 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. González, F. J. et al. Participation of T lymphocytes in cutaneous allergic reactions to drugs. Clin. Exp. Allergy 28 Suppl. 4, 3–6 (1998).

    PubMed  Google Scholar 

  8. Porter, S. R., Kirby, A., Olsen, I. & Barrett, W. Immunologic aspects of dermal and oral lichen planus: a review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 83, 358–366 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. McDonagh, A. J. & Messenger, A. G. The pathogenesis of alopecia areata. Dermatol. Clin. 14, 661–670 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Boh, E. E. & Millikan, L. E. Vesiculobullous diseases with prominent immunologic features. JAMA 268, 2893–2898 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Wong, E., Camp, R. D. R. & Greaves, M. W. The responses of normal and psoriatic skin to single and multiple topical applications of leukotriene B4. J. Invest. Dermatol. 84, 421–423 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Krueger, J. G., Wolfe, J. T. & Nabeya, R. T. Successful ultraviolet B treatment of psoriasis is accompanied by a reversal of keratinocyte pathology and by selective depletion of intraepidermal T cells. J. Exp. Med. 182, 2057–2068 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Gottlieb, S. L., Gilleaudeau, P. & Johnson, R. Response of psoriasis to be lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nature Med. 1, 442–447 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Lim, K. K. et al. Cyclosporine in the treatment of dermatologic disease: an update. Mayo Clin. Proc. 71, 1182–1191 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Kupper, T. S. & Groves, R. W. The interleukin-1 axis and cutaneous inflammation. J. Invest. Dermatol. 105, 62S–66S (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Murphy, J. E., Robert, C. & Kupper, T. S. Interleukin-1 and cutaneous inflammation: a crucial link between innate and acquired immunity. J. Invest. Dermatol. 114, 602–608 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Heufler, C. et al. Interleukin 7 is produced by murine and human keratinocytes. J. Exp. Med. 178, 1109–1114 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Yang, D., Chertov, O. & Oppenheim, J. J. The role of mammalian antimicrobial peptides and proteins in awakening of innate host defences and adaptive immunity. Cell. Mol. Life Sci. 58, 978–989 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Gallo, R. L., Murakami, M., Ohtake, T. & Zaiou, M. Biology and clinical relevance of naturally occurring antimicrobial peptides. J. Allergy Clin. Immunol. 110, 823–831 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Kupper, T. S., Chua, A. O., Flood, P., McGuire, J. & Gubler, U. Interleukin 1 gene expression in cultured human keratinocytes is augmented by ultraviolet irradiation. J. Clin. Invest. 80, 430–436 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wood, L. C., Elias, P. M. & Calhoun, C. Barrier disruption stimulates interleukin-1α expression and release from a pre-formed pool in murine epidermis. J. Invest. Dermatol. 106, 397–403 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Luger, T. A., Scholzen, T. & Grabbe, S. The role of α-melanocyte-stimulating hormone in cutaneous biology. J. Investig. Dermatol. Symp. Proc. 2, 87–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Dinarello, C. A. Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int. Rev. Immunol. 16, 457–499 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Fuhlbrigge, R. C. & Kupper, T. S. In Allergic Skin Disease (eds Leung, D. Y. M. & Greaves, M. W.) 29–52 (Marcel Dekker, New York, 2000).

    Google Scholar 

  25. Takashima, A. & Bergstresser, P. R. Cytokine-mediated communication by keratinocytes and Langerhans cells with dendritic epidermal T cells. Semin. Immunol. 8, 333–339 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Dahl, M. Clinical Immunodermatology (Mosby, St. Louis, 1996).

    Google Scholar 

  27. Stoll, S. et al. Production of IL-18 (IFN-γ-inducing factor) messenger RNA and functional protein by murine keratinocytes. J. Immunol. 159, 298–302 (1997).

    CAS  PubMed  Google Scholar 

  28. Steinhoff, M., Brzoska, T. & Luger, T. A. Keratinocytes in epidermal immune responses. Curr. Opin. Allergy Clin. Immunol. 1, 469–476 (2001).

    CAS  PubMed  Google Scholar 

  29. Kumar, S. et al. Identification and initial characterization of four novel members of the interleukin-1 family. J. Biol. Chem. 275, 10308–10314 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Sieling, P. A. & Modlin, R. L. Toll-like receptors: mammalian 'taste receptors' for a smorgasbord of microbial invaders. Curr. Opin. Microbiol. 5, 70–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Medzhitov, R. Toll-like receptors and innate immunity. Nature Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  Google Scholar 

  33. Barton, G. M. & Medzhitov, R. Control of adaptive immune responses by Toll-like receptors. Curr. Opin. Immunol. 14, 380–383 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, R. B. et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395, 284–288 (1998). This paper identified Toll-like receptor 2 (TLR2) as the receptor for lipopolysaccharide on mammalian cells, leading to an explosion of interest in TLRs as innate immune-response elements, as highlighted in references 35–40.

    Article  CAS  PubMed  Google Scholar 

  35. Brightbill, H. D. et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285, 732–736 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Aliprantis, A. O. et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285, 736–739 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Tada, H. et al. Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor α by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol. Immunol. 46, 503–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Wagner, H. Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity. Curr. Opin. Microbiol. 5, 62–69 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Jarrossay, D., Napolitani, G., Colonna, M., Sallusto, F. & Lanzavecchia, A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur. J. Immunol. 31, 3388–3393 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Kadowaki, N. et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–869 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krug, A. et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur. J. Immunol. 31, 3026–3037 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Medzhitov, R. & Janeway, C. A. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Barnes, P. J. Nuclear factor-κB. Int. J. Biochem. Cell Biol. 29, 867–870 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. von Andrian, U. H. & Mackay, C. R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 343, 1020–1034 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Supajatura, V. et al. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J. Clin. Invest. 109, 1351–1359 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marshall, J. S., McCurdy, J. D. & Olynych, T. Toll-like receptor-mediated activation of mast cells: implications for allergic disease? Int. Arch. Allergy Immunol. 132, 87–97 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. McCurdy, J. D., Olynych, T. J., Maher, L. H. & Marshall, J. S. Cutting edge: distinct Toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells. J. Immunol. 170, 1625–1629 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Lenz, A., Heine, M., Schuler, G. & Romani, N. Human and murine dermis contain dendritic cells. J. Clin. Invest. 92, 2587–2596 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998). This review brings together the view of dendritic cells (DCs) as the central mediators between innate and adaptive immune responses.

    Article  CAS  PubMed  Google Scholar 

  53. Hart, D. N. J. Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90, 3245–3287 (1997).

    CAS  PubMed  Google Scholar 

  54. Pierre, P. et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388, 787–792 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Schuller, E. et al. In situ expression of the co-stimulatory molecules CD80 and CD86 on langerhans cells and inflammatory dendritic epidermal cells (IDEC) in atopic dermatitis. Arch. Dermatol. Res. 293, 448–454 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Wollenberg, A., Kraft, S., Hanau, D. & Bieber, T. Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema. J. Invest. Dermatol. 106, 446–453 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Picker, L. J., Michie, S. A., Rott, L. S. & Butcher, E. C. A unique phenotype of skin-associated lymphocytes in human. Preferential expression of the HECA-452 epitope by benign and malignant T cells at cutaneous sites. Am. J. Pathol. 136, 1053–1068 (1990). This report provided the first evidence of a specific homing receptor for non-lymphoid tissues.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pitzalis, C. et al. Cutaneous lymphocyte antigen-positive T lymphocytes preferentially migrate to the skin but not to the joint in psoriatic arthritis. Arthritis Rheum. 39, 137–145 (1996). This study, together with references 62 and 64, firmly established cutaneous lymphocyte antigen (CLA) as a specific marker of skin-homing T cells.

    Article  CAS  PubMed  Google Scholar 

  59. Sigmundsdottir, H., Gudjonsson, J. E., Jonsdottir, I., Ludviksson, B. R. & Valdimarsson, H. The frequency of CLA+ CD8+ T cells in the blood of psoriasis patients correlates closely with the severity of their disease. Clin. Exp. Immunol. 126, 365–369 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Noorduyn, L. et al. Differential expression of the HECA-452 antigen (cutaneous lymphocyte associated antigen, CLA) in cutaneous and non-cutaneous T-cell lymphomas. Histopathology 21, 59–64 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Santamaria Babi, L. F., Perez Soler, M. T., Hauser, C. & Blaser, K. Skin-homing T cells in human cutaneous allergic inflammation. Immunol. Res. 14, 317–324 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Santamaria Babi, L. F. et al. Circulating allergen-reactive T cells from patients with atopic dermatitis and allergic contact dermatitis express the skin-selective homing receptor, the cutaneous lymphocyte-associated antigen. J. Exp. Med. 181, 1935–1940 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Tanaka, Y. et al. Distinct phenotype of leukemic T cells with various tissue tropisms. J. Immunol. 158, 3822–3829 (1997).

    CAS  PubMed  Google Scholar 

  64. Davis, R. E. & Smoller, B. R. T lymphocytes expressing HECA-452 epitope are present in cutaneous acute graft-versus-host disease and erythema multiforme, but not in acute graft-versus-host disease in gut organs. Am. J. Pathol. 141, 691–698 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rook, A. H. & Heald, P. The immunopathogenesis of cutaneous T-cell lymphoma. Hematol. Oncol. Clin. North Am. 9, 997–1010 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74, 185–195 (1993). This study identified integrin α 4 β 7 as the T-cell-homing receptor for Peyer's patches.

    Article  CAS  PubMed  Google Scholar 

  67. Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Dudda, J. C., Simon, J. C. & Martin, S. Dendritic cell immunization route determines CD8+ T cell trafficking to inflamed skin: role for tissue microenvironment and dendritic cells in establishment of T cell-homing subsets. J. Immunol. 172, 857–863 (2004). References 67 and 68 showed that T cells responding to DCs from different anatomic sites are induced to express different patterns of homing receptors.

    Article  CAS  PubMed  Google Scholar 

  69. Koelle, D. M. et al. Expression of cutaneous lymphocyte-associated antigen by CD8+ T cells specific for a skin-tropic virus. J. Clin. Invest. 110, 537–548 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rott, L. S. et al. Expression of mucosal homing receptor α4β7 by circulating CD4+ cells with memory for intestinal rotavirus. J. Clin. Invest. 100, 1204–1208 (1997). References 69 and 70 provided evidence for tissue-specific homing of CD8+ cytotoxic T cells to the skin and to the gut in response to infection with tissue-tropic viruses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Armerding, D. & Kupper, T. S. Functional cutaneous lymphocyte antigen can be induced in essentially all peripheral blood T lymphocytes. Int. Arch. Allergy Immunol. 119, 212–222 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Akdis, M., Klunker, S., Schliz, M., Blaser, K. & Akdis, C. A. Expression of cutaneous lymphocyte-associated antigen on human CD4+ and CD8+ TH2 cells. Eur. J. Immunol. 30, 3533–3541 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Colantonio, L., Iellem, A., Sinigaglia, F. & D'Ambrosio, D. Skin-homing CLA+ T cells and regulatory CD25+ T cells represent major subsets of human peripheral blood memory T cells migrating in response to CCL1/I-309. Eur. J. Immunol. 32, 3506–3514 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Biedermann, T. et al. Targeting CLA/E-selectin interactions prevents CCR4-mediated recruitment of human TH2 memory cells to human skin in vivo. Eur. J. Immunol. 32, 3171–3180 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Hudak, S. et al. Immune surveillance and effector functions of CCR10+ skin homing T cells. J. Immunol. 169, 1189–1196 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Reiss, Y., Proudfoot, A. E., Power, C. A., Campbell, J. J. & Butcher, E. C. CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J. Exp. Med. 194, 1541–1547 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morales, J. et al. CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc. Natl Acad. Sci. USA 96, 14470–14475 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Homey, B. et al. CCL27–CCR10 interactions regulate T cell-mediated skin inflammation. Nature Med. 8, 157–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Fitzhugh, D. J., Naik, S., Caughman, S. W. & Hwang, S. T. Cutting edge: C-C chemokine receptor 6 is essential for arrest of a subset of memory T cells on activated dermal microvascular endothelial cells under physiologic flow conditions in vitro. J. Immunol. 165, 6677–6681 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Klunker, S. et al. A second step of chemotaxis after transendothelial migration: keratinocytes undergoing apoptosis release IFN-γ-inducible protein 10, monokine induced by IFN-γ, and IFN-γ-inducible α-chemoattractant for T cell chemotaxis toward epidermis in atopic dermatitis. J. Immunol. 171, 1078–1084 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Ferenczi, K., Fuhlbrigge, R. C., Pinkus, J., Pinkus, G. S. & Kupper, T. S. Increased CCR4 expression in cutaneous T cell lymphoma. J. Invest. Dermatol. 119, 1405–1410 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Kunkel, E. J. et al. Expression of the chemokine receptors CCR4, CCR5, and CXCR3 by human tissue-infiltrating lymphocytes. Am. J. Pathol. 160, 347–355 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Janssen, G. H., Tangelder, G. J., Oude Egbrink, M. G. & Reneman, R. S. Spontaneous leukocyte rolling in venules in untraumatized skin of conscious and anesthetized animals. Am. J. Physiol. 267, H1199–H1204 (1994).

    CAS  PubMed  Google Scholar 

  84. Robert, C. et al. Interaction of dendritic cells with skin endothelium: a new perspective on immunosurveillance. J. Exp. Med. 189, 627–636 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chong, B. F., Murphy, J. -E., Kupper, T. S. & Fuhlbrigge, R. C. E-selectin, thymus- and activation-regulated chemokine/CCL17, and intercellular adhesion molecule-1 are constitutively coexpressed in dermal microvessels: a foundation for a cutaneous immunosurveillance system. J. Immunol. 172, 1575–1581 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Weninger, W. et al. Specialized contributions by α(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels. Immunity 12, 665–676 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Groves, R. W. et al. Effect of in vivo interleukin-1 on adhesion molecule expression in normal human skin. J. Invest. Dermatol. 98, 384–387 (1992).

    Article  CAS  PubMed  Google Scholar 

  88. Langeveld-Wildschut, E. G. et al. Clinical and immunologic variables in skin of patients with atopic eczema and either positive or negative atopy patch test reactions. J. Allergy Clin. Immunol. 105, 1008–1016 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999). This study distinguished effector memory T cells, which participate in peripheral inflammatory responses, from central memory T cells, which migrate through secondary lymphoid tissues and provide long-term memory.

    Article  CAS  PubMed  Google Scholar 

  90. Campbell, J. J. et al. CCR7 expression and memory T cell diversity in humans. J. Immunol. 166, 877–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Girolomoni, G., Sebastiani, S., Albanesi, C. & Cavani, A. T-cell subpopulations in the development of atopic and contact allergy. Curr. Opin. Immunol. 13, 733–737 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Cavani, A. et al. Human CD25+ regulatory T cells maintain immune tolerance to nickel in healthy, nonallergic individuals. J. Immunol. 171, 5760–5768 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Mahnke, K., Qian, Y., Knop, J. & Enk, A. H. Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 101, 4862–4869 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Wrone-Smith, T. & Nickoloff, B. J. Dermal injection of immunocytes induces psoriasis. J. Clin. Invest. 98, 1878–1887 (1996). This study firmly established that psoriasis is dependent on immune cells using an animal model of human skin grafted onto immune-deficient mice and injected with autologous T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kupper, T. S. Immunologic targets in psoriasis. N. Engl. J. Med. 349, 1987–1990 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Cather, J. & Menter, A. Novel therapies for psoriasis. Am. J. Clin. Dermatol. 3, 159–173 (2002).

    Article  PubMed  Google Scholar 

  97. Asadullah, K. et al. IL-10 is a key cytokine in psoriasis. Proof of principle by IL-10 therapy: a new therapeutic approach. J. Clin. Invest. 101, 783–794 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Trepicchio, W. L. et al. Interleukin-11 therapy selectively downregulates type I cytokine proinflammatory pathways in psoriasis lesions. J. Clin. Invest. 104, 1527–1537 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ghoreschi, K. et al. Interleukin-4 therapy of psoriasis induces TH2 responses and improves human autoimmune disease. Nature Med. 9, 40–46 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Cather, J. C. & Abramovits, W. Investigational therapies for psoriasis. J. Am. Acad. Dermatol. 49, S133–S138 (2003).

    Article  PubMed  Google Scholar 

  101. Williams, J. D. & Griffiths, C. E. Cytokine blocking agents in dermatology. Clin. Exp. Dermatol. 27, 585–590 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Bhushan, M. et al. Anti-E-selectin is ineffective in the treatment of psoriasis: a randomized trial. Br. J. Dermatol. 146, 824–831 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Schon, M. P. et al. Efomycine M, a new specific inhibitor of selectin, impairs leukocyte adhesion and alleviates cutaneous inflammation. Nature Med. 8, 366–372 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Tofte, S. J. & Hanifin, J. M. Current management and therapy of atopic dermatitis. J. Am. Acad. Dermatol. 44, S13–S16 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Williams, H. C. Epidemiology of atopic dermatitis. Clin. Exp. Dermatol. 25, 522–529 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Hanifin, J. M. Epidemiology of atopic dermatitis. Monogr. Allergy 21, 116–131 (1987).

    CAS  PubMed  Google Scholar 

  107. Engler, R. J., Kenner, J. & Leung, D. Y. Smallpox vaccination: risk considerations for patients with atopic dermatitis. J. Allergy Clin. Immunol. 110, 357–365 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Sidbury, R. & Hanifin, J. M. Old, new, and emerging therapies for atopic dermatitis. Dermatol. Clin. 18, 1–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Shum, K. W., Lawton, S., Williams, H. C., Docherty, G. & Jones, J. The British Association of Dermatologists audit of atopic eczema management in secondary care. Phase 2: audit of service process. Br. J. Dermatol. 142, 274–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Wuthrich, B. & Schmid-Grendelmeier, P. The atopic eczema/dermatitis syndrome. Epidemiology, natural course, and immunology of the IgE-associated ('extrinsic') and the nonallergic ('intrinsic') AEDS. J. Investig. Allergol. Clin. Immunol. 13, 1–5 (2003).

    CAS  PubMed  Google Scholar 

  111. Akdis, C. & Akdis, M. Immunological differences between intrinsic and extrinsic types of atopic dermatitis. Clin. Exp. Allergy 33, 1618–1621 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Bohle, B. et al. Long-lived TH2 clones specific for seasonal and perennial allergens can be detected in blood and skin by their TCR-hypervariable regions. J. Immunol. 160, 2022–2027 (1998).

    CAS  PubMed  Google Scholar 

  113. Grewe, M. et al. A role for TH1 and TH2 cells in the immunopathogenesis of atopic dermatitis. Immunol. Today 19, 359–361 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Ong, P. Y. et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med. 347, 1151–1160 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Nomura, I. et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J. Immunol. 171, 3262–3269 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Grabbe, S. & Schwarz, T. Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Am. J. Contact Dermat. 7, 238–246 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Kimber, I. & Dearman, R. J. Allergic contact dermatitis: the cellular effectors. Contact Dermatitis 46, 1–5 (2002).

    Article  PubMed  Google Scholar 

  118. Leung, D. Y. Molecular basis of allergic diseases. Mol. Genet. Metab. 63, 157–167 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Cavani, A. et al. Human CD4+ T lymphocytes with remarkable regulatory functions on dendritic cells and nickel-specific TH1 immune responses. J. Invest. Dermatol. 114, 295–302 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Aractingi, S. & Chosidow, O. Cutaneous graft-versus-host disease. Arch. Dermatol. 134, 602–612 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Edelson, R. L. Cutaneous T cell lymphoma: the helping hand of dendritic cells. Ann. NY Acad. Sci. 941, 1–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Rook, A. H. et al. Pathogenesis of cutaneous T-cell lymphoma: implications for the use of recombinant cytokines and photopheresis. Clin. Exp. Immunol. 107 Suppl. 1, 16–20 (1997).

    PubMed  Google Scholar 

  123. Yawalkar, N. et al. Profound loss of T cell receptor repertoire complexity in cutaneous T cell lymphoma. Blood 102, 4059–4066 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Kemp, E. H., Waterman, E. A. & Weetman, A. P. Immunological pathomechanisms in vitiligo. Expert Rev. Mol. Med. 3, 1–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Ogg, G. S., Dunbar, R., Romero, P., Chen, J. L. & Cerundolo, V. High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J. Exp. Med. 188, 1203–1208 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Clark, W. H., Jr, From, L., Bernardino, E. A. & Mihm, M. C. The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res. 29, 705–727 (1969).

    PubMed  Google Scholar 

  127. Ruiter, D. J., Bhan, A. K., Harrist, T. J., Sober, A. J. & Mihm, M. C., Jr. Major histocompatibility antigens and mononuclear inflammatory infiltrate in benign nevomelanocytic proliferations and malignant melanoma. J. Immunol. 129, 2808–2815 (1982).

    CAS  PubMed  Google Scholar 

  128. Clark, W. H., Jr. et al. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum. Pathol. 15, 1147–1165 (1984).

    Article  PubMed  Google Scholar 

  129. Ferradini, L. et al. Analysis of T cell receptor variability in tumor-infiltrating lymphocytes from a human regressive melanoma. Evidence for in situ T cell clonal expansion. J. Clin. Invest. 91, 1183–1190 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mackensen, A. et al. Evidence for in situ amplification of cytotoxic T-lymphocytes with antitumor activity in a human regressive melanoma. Cancer Res. 53, 3569–3573 (1993).

    CAS  PubMed  Google Scholar 

  131. Mackensen, A. et al. Direct evidence to support the immunosurveillance concept in a human regressive melanoma. J. Clin. Invest. 93, 1397–1402 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Salvi, S. et al. Overexpression of the T-cell receptor β-chain variable region TCRBV14 in HLA-A2-matched primary human melanomas. Cancer Res. 55, 3374–3379 (1995).

    CAS  PubMed  Google Scholar 

  133. Clark, W. H., Jr. et al. Model predicting survival in stage I melanoma based on tumor progression. J. Natl Cancer Inst. 81, 1893–1904 (1989).

    Article  PubMed  Google Scholar 

  134. Pastorfide, G. C. et al. Image analysis of stage 1 melanoma (1.00–2.50 mm): lymphocytic infiltrates related to metastasis and survival. J. Cutan. Pathol. 19, 390–397 (1992).

    Article  CAS  PubMed  Google Scholar 

  135. Clemente, C. G. et al. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77, 1303–1310 (1996).

    Article  CAS  PubMed  Google Scholar 

  136. Weber, L. W. et al. Tumor immunity and autoimmunity induced by immunization with homologous DNA. J. Clin. Invest. 102, 1258–1264 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bendandi, M. et al. Complete molecular remissions induced by patient-specific vaccination plus granulocyte–monocyte colony-stimulating factor against lymphoma. Nature Med. 5, 1171–1177 (1999). This study highlighted the capacity of tumour-specific vaccination to induce complete remissions and set the standards for future cancer vaccine trials.

    Article  CAS  PubMed  Google Scholar 

  138. Restifo, N. P. & Rosenberg, S. A. Developing recombinant and synthetic vaccines for the treatment of melanoma. Curr. Opin. Oncol. 11, 50–57 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nair, S. K. et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nature Med. 6, 1011–1017 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Nestle, F. O., Banchereau, J. & Hart, D. Dendritic cells: on the move from bench to bedside. Nature Med. 7, 761–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Jager, E., Jager, D. & Knuth, A. Clinical cancer vaccine trials. Curr. Opin. Immunol. 14, 178–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Nestle, F. O. Vaccines and melanoma. Clin. Exp. Dermatol. 27, 597–601 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Dranoff, G. GM-CSF-secreting melanoma vaccines. Oncogene 22, 3188–3192 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Engleman, E. G. Dendritic cell-based cancer immunotherapy. Semin. Oncol. 30, 23–29 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Mackensen, A. et al. Homing of intravenously and intralymphatically injected human dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells. Cancer Immunol. Immunother. 48, 118–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  146. Onaitis, M., Kalady, M. F., Pruitt, S. & Tyler, D. S. Dendritic cell gene therapy. Surg. Oncol. Clin. N. Am. 11, 645–660 (2002).

    Article  PubMed  Google Scholar 

  147. Gilliet, M. et al. Intranodal injection of semimature monocyte-derived dendritic cells induces T helper type 1 responses to protein neoantigen. Blood 102, 36–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Touloukian, C. E. & Rosenberg, S. A. A survey of treatments used in patients with metastatic melanoma: analysis of 189 patients referred to the National Cancer Institute. Cancer J. Sci. Am. 5, 269–274 (1999).

    CAS  PubMed  Google Scholar 

  149. Robert, C. et al. Gene therapy to target dendritic cells from blood to lymph nodes. Gene Ther. 10, 1479–1486 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Dhodapkar, M. V. & Steinman, R. M. Antigen-bearing immature dendritic cells induce peptide-specific CD8+ regulatory T cells in vivo in humans. Blood 100, 174–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Henderson, D. A. Smallpox: clinical and epidemiologic features. Med. Health R. I. 85, 107–108 (2002).

    CAS  PubMed  Google Scholar 

  152. McClain, D. J. et al. Immunologic responses to vaccinia vaccines administered by different parenteral routes. J. Infect. Dis. 175, 756–763 (1997). This report confirmed the decades old clinical impression that scarification as a method of vaccinia-virus vaccination was superior to subcutaneous and intramuscular injection in the induction of vaccinia-virus-specific immune responses.

    Article  CAS  PubMed  Google Scholar 

  153. Goldstein, J. A., Neff, J. M., Lane, J. M. & Koplan, J. P. Smallpox vaccination reactions, prophylaxis, and therapy of complications. Pediatrics 55, 342–347 (1975).

    CAS  PubMed  Google Scholar 

  154. Leung, D. Y. & Soter, N. A. Cellular and immunologic mechanisms in atopic dermatitis. J. Am. Acad. Dermatol. 44, S1–S12 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Jackson, R. J. et al. Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J. Virol. 75, 1205–1210 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ambach, A., Bonnekoh, B. & Gollnick, H. Perforin hyperreleasability and depletion in cytotoxic T cells from patients with exacerbated atopic dermatitis and asymptomatic rhinoconjunctivitis allergica. J. Allergy Clin. Immunol. 107, 878–886 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Hirata, T. et al. P-selectin glycoprotein ligand 1 (PSGL-1) is a physiological ligand for E-selectin in mediating T helper 1 lymphocyte migration. J. Exp. Med. 192, 1669–1676 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Abernathy-Carver, K., Sampson, H., Picker, L. & Leung, D. Milk-induced eczema is associated with the expansion of T cells expressing cutaneous lymphocyte antigen. J. Clin. Invest. 95, 913–918 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tanaka, T. et al. Interleukin-18 is elevated in the sera from patients with atopic dermatitis and from atopic dermatitis model mice, NC/Nga. Int. Arch. Allergy Immunol. 125, 236–240 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. Girolomoni, G. & Pastore, S. The role of keratinocytes in the pathogenesis of atopic dermatitis. J. Am. Acad. Dermatol. 45, S25–S28 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Giustizieri, M. L. et al. Keratinocytes from patients with atopic dermatitis and psoriasis show a distinct chemokine production profile in response to T cell-derived cytokines. J. Allergy Clin. Immunol. 107, 871–877 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. Pastore, S., Corinti, S., La Placa, M., Didona, B. & Girolomoni, G. Interferon-γ promotes exaggerated cytokine production in keratinocytes cultured from patients with atopic dermatitis. J. Allergy Clin. Immunol. 101, 538–544 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Fuhlbrigge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

CCL17

CCL22

CCL27

CCR4

CCR6

CCR7

CCR10

CD62L

CD80

CD86

CTLA4

CXCL9

CXCL10

CXCL11

CXCR3

E-selectin

GM-CSF

ICAM1

IFN-γ

IL-1α

IL-1β

IL-4

IL-5

IL-6

IL-10

IL-13

LFA1

P-selectin

TNF

VCAM1

FURTHER INFORMATION

Harvard Skin Research Center

Brigham and Women's Hospital Dermatology Clinic

Glossary

DANGER SIGNALS

Cell-wall components and other products of pathogens that alert the innate immune system to the presence of potentially harmful invaders, usually by interacting with Toll-like receptors and other pattern-recognition receptors that are expressed by tissue cells and dendritic cells, for example.

LANGERHANS CELLS

Immature bone-marrow-derived dendritic cells that reside for long periods of time in the epidermis. They contain Langerin and Birbeck granules, express E-cadherin and bind to contiguous keratinocytes. Stimulation through Toll-like receptors or other danger-signal receptors causes them to migrate to the draining lymph node and mature into highly efficient antigen-presenting cells.

ANTIMICROBIAL PEPTIDES

Evolutionarily conserved peptides that directly bind to and interact with cell surfaces of bacteria and fungi, usually inducing the formation of pores, leading to the death of target cells.

PROSTANOID

A member of the broad family of arachidonic-acid-derived inflammatory mediators.

GRAFT-VERSUS-HOST DISEASE

(GVHD). Tissue damage in a recipient of allogeneic transplanted tissue (usually a bone-marrow transplant) that results from the activity of donor cytotoxic T lymphocytes that recognize the recipient's tissue as foreign. GVHD varies markedly in severity, but can be life threatening in severe cases. Typically, damage to the skin and gut mucosa leads to clinical manifestations.

REGULATORY T CELL

A type of T cell that can inhibit effector-T-cell activation in an antigen-specific manner.

T HELPER 1 CELL

(TH1). A type of T cell that, through the production of interferon-γ, interleukin-10 and other cytokines, can stimulate cellular immunity against viral and bacterial pathogens.

T HELPER 2 CELL

(TH2). A type of T cell that, through the production of interleukin-4 (IL-4), IL-13 and other cytokines, can help B cells to produce IgE and other antibodies and, through the secretion of IL-5, IL-3 and others, can promote increased numbers of eosinophils, basophils and mast cells.

DELAYED-TYPE HYPERSENSITIVITY

A cellular immune response to antigen that develops over 24–72 hours with the infiltration of T cells and monocytes, and depends on the production of T helper-1-specific cytokines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kupper, T., Fuhlbrigge, R. Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 4, 211–222 (2004). https://doi.org/10.1038/nri1310

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nri1310

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing