Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Innate immunity to malaria

Key Points

  • Innate immune responses have been shown to contribute to the control of malaria infections in mice and there is indirect evidence that they also contribute to the control of infection in humans.

  • There is conflicting evidence on the effect of malaria infection on dendritic cells (DCs), with conventional activation of DCs reported in some model systems and modulation of DC function towards an immunoregulatory phenotype reported in other systems.

  • Natural killer T (NKT) cells have a role in immunity to liver-stage parasites in mice, but there is little evidence so far for a role for these cells in the response to human malaria.

  • γδ T cells are activated in malaria infections in both mice and humans, and contribute to parasite clearance, but this role does not seem to be essential; some studies indicate that they might contribute to immune-mediated pathology.

  • NK cells are frequently the earliest source of interferon-γ during a blood-stage malaria infection and have an essential role in controlling acute parasitaemia in mice. Heterogeneity of the NK-cell response in humans indicates that their activation might be influenced by polymorphic NK-cell receptors.

  • Polymorphisms have been described in many genes encoding components of the innate immune response and there is evidence that such polymorphisms might affect the outcome of infection in humans.

  • Although a robust pro-inflammatory cytokine response emanating from cells of the innate immune system might be important for controlling acute infection, the potential for these responses to contribute to immune-mediated pathology needs to be investigated.

  • Innate immune responses influence the nature and magnitude of the adaptive immune response to malaria. Activators of the innate response might therefore be incorporated into malaria vaccines to provide adjuvant activity.

Abstract

Malaria is a major cause of disease and death in tropical countries. A safe and effective vaccine is essential to achieve significant and sustained reductions in malaria-related morbidity and mortality. Driven by this need, research on the immunology of malaria has tended to focus on adaptive immunity. The potential for innate immune mechanisms to provide rapid protection against malaria has been largely neglected. On the basis of data from animal models, and clinical and epidemiological studies, this review considers the potential for innate immune mechanisms directed against Plasmodium parasites both to contribute to protection from malaria and to modulate adaptive immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The life cycle of Plasmodium falciparum in the human host and mosquito vector.
Figure 2: Representative course of infection with Plasmodium chabaudi chabaudi AS.
Figure 3: Linking innate and adaptive immunity to blood-stage malaria.

Similar content being viewed by others

References

  1. Malaria: Parasite Biology, Pathogenesis and Protection. (ed. Sherman, I. W.) (ASM Press, Washington DC, 1998).

  2. Good, M. F. & Doolan, D. L. Immune effector mechanisms in malaria. Curr. Opin. Immunol. 11, 412–419 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Good, M. F. Towards a blood-stage vaccine for malaria: are we following all the leads? Nature Rev. Immunol. 1, 117–125 (2001).

    Article  CAS  Google Scholar 

  4. Schofield, L. et al. Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature 418, 785–789 (2002). This paper shows a causal association between malarial glycosylphosphatidylinositol (GPI) and severe pathology in mice.

    Article  CAS  PubMed  Google Scholar 

  5. Franks, S., et al. Frequent and persistent asymptomatic Plasmodium falciparum infections in African infants characterised by multilocus genotyping. J. Infect. Dis. 183, 796–804 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Miller, L. H., Baruch, D. I., Marsh, K. & Doumbo, O. K. The pathogenic basis of malaria. Nature 415, 673–679 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Kwiatkowski, D. et al. The malarial fever response — pathogenesis, polymorphism and prospects for intervention. Ann. Trop. Med. Parasitol. 91, 533–542 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Hunt, N. & Grau, G. E. Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol. 24, 491–499 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Langhorne, J., Quin, S. J. & Sanni L. A. Mouse models of blood-stage malaria infections: immune responses and cytokines involved in protection and pathology. Chem. Immunol. 80, 204–228 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Fortin, A., Stevenson, M. M. & Gros, P. Susceptibility to malaria as a complex trait: huge pressure from a tiny creature. Hum. Mol. Genetics 11, 2469–2478 (2002).

    Article  CAS  Google Scholar 

  11. de Souza, J. B. & Riley, E. M. Cerebral malaria: the contribution of studies in animals to our understanding of immunopathogenesis. Microbes Infect. 4, 291–300 (2002).

    Article  PubMed  Google Scholar 

  12. Shear, H. L., Marino, M. W., Wanidworanun, C. J., Berman, W. & Nagel, R. L. Correlation of increased expression of intercellular adhesion molecule-1, but not high levels of tumor necrosis factor-α, with lethality of Plasmodium yoelii 17XL, a rodent model of cerebral malaria. Am. J. Trop. Med. Hyg. 59, 852–858 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. McQueen, K. & Parham, P. Variable receptors controlling activation and inhibition of NK cells. Curr. Opin. Immunol. 14, 615–621 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Colucci, F., Di Santo, J. P. & Leibson, P. J. Natural killer cell activation in mice and men: different triggers for similar weapons? Nature Immunol. 3, 807–813 (2002).

    Article  CAS  Google Scholar 

  15. Shortman, K. & Liu, Y. -J. Mouse and human dendritic cell subtypes. Nature Rev. Immunol. 2, 151–161 (2002).

    Article  CAS  Google Scholar 

  16. Su, Z. & Stevenson, M. M. IL-12 is required for antibody-mediated protective immunity against blood-stage Plasmodium chabaudi AS malaria. J. Immunol. 168, 1348–1355 (2002). This is the first paper to show the importance of a T helper 1 (T H 1)-cell response for protective immunity during both the acute and chronic phases of blood-stage infection with Plasmodium chabaudi chabaudi AS, and the role of interleukin-12 (IL-12) in inducing cell-mediated and antibody-mediated immunity to malaria.

    Article  CAS  PubMed  Google Scholar 

  17. Stevenson, M. M., Su, Z., Sam, H. & Mohan, K. Modulation of host responses to blood-stage malaria by interleukin-12: from therapy to adjuvant activity. Microbes Infect. 3, 49–59 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. van der Heyde, H. C., Pepper, B., Batchelder, J., Cigel, F. & Weidanz, W. P. The time course of selected malarial infections in cytokine-deficient mice. Exp. Parasitol. 85, 206–213 (1997). References 18 and 20 provide evidence for the essential role of interferon-γ (IFN-γ) in protective immunity to blood-stage infection with P. chabaudi species and Plasmodium yoelii.

    Article  CAS  PubMed  Google Scholar 

  19. Su, Z. & Stevenson, M. M. Central role of endogenous γ-interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. Infect. Immun. 68, 4399–4406 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meding, S. J. & Langhorne, J. CD4+ T cells and B cells are necessary for the transfer of protective immunity to Plasmodium chabaudi chabaudi. Eur. J. Immunol. 21, 1433–1438 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Choudhury, H., Sheikh, N., Bancroft, G., Katz, D. & De Souza, J. Early nonspecific immune responses and immunity to blood-stage nonlethal Plasmodium yoelii malaria. Infect. Immun. 68, 6127–6132 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mohan, K., Moulin, P. & Stevenson, M. M. Natural killer cell cytokine production, not cytotoxicity, contributes to resistance against blood-stage Plasmodium chabaudi AS infection. J. Immunol. 159, 4990–4998 (1997).

    CAS  PubMed  Google Scholar 

  23. de Souza, J. B., Williamson, K. H., Otani, T. & Playfair, J. H. L. Early γ-interferon responses in lethal and nonlethal murine blood stage malaria. Infect. Immun. 65, 1593–1598 (1997). References 21–23 show that the production of IFN-γ by natural killer (NK) cells and possibly γδ T cells early in infection is important in activating the appropriate CD4+ T H -cell subset during blood-stage malaria in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Molineaux, L., Trauble, M., Collins, W., Jeffery, G. & Dietz, K. Malaria therapy reinoculation data suggest individual variation of an innate immune response and independent acquisition of antiparasitic and antitoxic immunities. Trans. R. Soc. Trop. Med. Hyg. 96, 205–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Luty, A., Kun, J. & Kremsner, P. Mannose-binding lectin plasma levels and gene polymorphisms in Plasmodium falciparum malaria. J. Infect. Dis. 178, 1221–1224 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Burgner, D., et al. Nucleotide and haplotypic diversity of the NOS2A promoter region and its relationship to cerebral malaria. Hum. Genetics 112, 379–386 (2003).

    CAS  Google Scholar 

  27. Kun, J. et al. Nitric oxide synthase 2Lambarene (G-954C), increased nitric oxide production, and protection against malaria. J. Infect. Dis. 184, 330–336 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Hobbs, M. et al. A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children. Lancet 360, 1468–1475 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Hill, A. V. S. et al. Common West African HLA antigens are associated with protection from severe malaria. Nature 352, 595–600 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Koch, O. et al. IFNGR1 gene promoter polymorphisms and susceptibility to cerebral malaria. J. Infect. Dis. 185, 1684–1687 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Aucan, C. et al. Interferon-α receptor-1 (IFNAR1) variants are associated with protection against cerebral malaria in The Gambia. Genes Immun. 4, 275–282 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Omi, K. et al. CD36 polymorphism is associated with protection from cerebral malaria. Am. J. Hum. Genet. 72, 364–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Aitman, T. et al. Malaria susceptibility and CD36 mutation. Nature 405, 1015–1016 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Pain, A. et al. A non-sense mutation in CD36 gene is associated with protection from severe malaria. Lancet 357, 1502–1503 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Artavanis-Tsakonas, K. et al. Activation of a subset of human natural killer cells upon contact with Plasmodium falciparum-infected erythrocytes. J. Immunol. 171, 5396–5405 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Sabeti, P. et al. CD40L association with protection from severe malaria. Genes Immun. 3, 286–291 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. McGuire, W., Hill A. V. S., Allsopp, C. E. M., Greenwood, B. M. & Kwiatkowski, D. Variation in the TNFα promoter region associated with susceptibility to cerebral malaria. Nature 371, 508–511 (1994). This study was the first to show a relationship between a cytokine gene polymorphism and risk of severe malaria, indicating the need to regulate inflammatory cytokine levels to prevent severe pathology.

    Article  CAS  PubMed  Google Scholar 

  38. Knight, J. C. et al. A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nature Genet. 22, 145–150 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Luoni, G. et al. Antimalarial antibody levels and IL-4 polymorphism in the Fulani of West Africa. Genes Immun. 2, 411–414 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Morahan, G., et al. A promoter polymorphism in the gene encoding interleukin-12 p40 (IL12B) is associated with mortality from cerebral malaria and with reduced nitric oxide production. Genes Immun. 3, 414–418 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Kwiatkowski, D. Genetic susceptibility to malaria getting complex. Curr. Opin. Genet. Dev. 10, 320–324 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Hermsen, C. et al. Circulating concentrations of soluble granzyme A and B increase during natural and experimental Plasmodium falciparum infections. Clin. Exp. Immunol. 132, 467–472 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scragg, I., Hensmann, M., Bate, C. & Kwiatkowski, D. Early cytokine induction by Plasmodium falciparum is not a classical endotoxin-like process. Eur. J. Immunol. 29, 2636–2644 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Bruce, M. & Day, K. P. Cross-species regulation of Plasmodium parasitemia in semi-immune children from Papua New Guinea. Trends Parasitol. 19, 271–277 (2003). This article describes how innate immune responses can control, but not eliminate, malaria infections and that innate effector mechanisms are equally effective against different species and strains of malaria.

    Article  PubMed  Google Scholar 

  45. Kwiatkowski, D. & Nowak, M. Periodic and chaotic host-parasite interactions in human malaria. Proc. Natl Acad. Sci. USA 88, 5111–5113 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Richie, T. L. Interactions between malaria parasites infecting the same vertebrate hosts. Parasitology 96, 607–639 (1988).

    Article  PubMed  Google Scholar 

  47. Maitland, K., Williams, T. N. & Newbold, C. Plasmodium vivax and P. falciparum: biological interactions and the possibility of cross-species immunity. Parasitol. Today 13, 227–231 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Ewald, P. W. Evolution of Infectious Disease (Oxford University Press, New York, 1994).

    Google Scholar 

  49. Scharton-Kersten, T., Afonso, L., Wysocka, M., Trinchieri, G. & Scott, P. IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis. J. Immunol. 154, 5320–5330 (1995).

    CAS  PubMed  Google Scholar 

  50. Biron, C. A. Activation and function of natural killer responses during viral infections. Curr. Opin. Immunol. 9, 24–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Unanue, E. R. Inter-relationship among macrophages, natural killer cells, and neutrophils in early stage of Listeria resistance. Curr. Opin. Immunol. 9, 35–43 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Scharton-Kersten, T. & Sher, A. Role of natural killer cells in innate resistance to protozoan infections. Curr. Opin. Immunol. 9, 44–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Quin, S. J. et al. Low CD4+ T cell responses to the C-terminal region of the malaria merozoite surface protein-1 may be attributed to processing within distinct MHC class II pathways. Eur. J. Immunol. 31, 72–81 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Luyendyk, J., Olivas, O. R., Ginger, L. A. & Avery, A. C. Antigen-presenting cell function during Plasmodium yoelii infection. Infect. Immun. 70, 2941–2949 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McGregor, I. A. & Barr, M. Antibody response to tetanus toxoid inoculation in malarious and non-malarious Gambian children. Trans. R. Soc. Med. Hyg. 56, 364–367 (1962).

    Article  Google Scholar 

  56. Greenwood, B. M., Bradley-Moore, A. M., Palit, A. & Bryceson, A. D. M. Immunosuppression in children with malaria. Lancet 1, 169–172 (1972).

    Article  CAS  PubMed  Google Scholar 

  57. Serghides, I., Smith, T. G., Patel, S. N. & Kain, K. C. CD36 and malaria: friends or foes? Trends Parasitol. 19, 461–469 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Guermonprez, P., Valladeau, J., Zitvogel, L., Théry, C. & Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621–667 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Sher, A., Pearce, E. & Kaye, P. Shaping the immune response to parasites: role of dendritic cells. Curr. Opin. Immunol. 15, 421–429 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Robinson, B., Welch, T. & Smith, J. Widespread functional specialization of Plasmodium falciparum erythrocyte membrane protein 1 family members to bind CD36 analysed across a parasite genome. Mol. Microbiol. 47, 1265–1278 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Urban, B. C. et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400, 73–77 (1999). This was the first report of the ability of Plasmodium parasites to inhibit dendritic-cell (DC) maturation and antigen-presenting function in vitro.

    Article  CAS  PubMed  Google Scholar 

  62. Eda, S. & I. Sherman . Cytoadherence of malaria-infected red blood cells involves exposure of phosphatidylserine. Cell Physiol. Biochem. 12, 373–384 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Tachado, S. D. et al. Glycophosphatidylinositol toxin of Plasmodium induces nitric oxide synthase expression in macrophages and vascular endothelial cells by a protein tyrosine kinase-dependent and protein kinase C-dependent signaling pathway. J. Immunol. 156, 1897–1907 (1996).

    CAS  PubMed  Google Scholar 

  64. Vijaykumar, M., Naik, R. & Gowda, D. Plasmodium falciparum glycosylphosphatidylinositol-induced TNF-α secretion by macrophages is mediated without membrane insertion or endocytosis. J. Biol. Chem. 276, 6909–6912 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Adachi, K. et al. Plasmodium berghei infection in mice induces liver injury by an IL-12- and toll-like receptor/myeloid differentiation factor 88-dependent mechanism. J. Immunol. 167, 5928–5934 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Behr, C. et al. Plasmodium falciparum stimuli for human γδ T cells are related to the phophorylated antigens of mycobacteria. Infect. Immun. 64, 2892–2896 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pichyangkul, S. et al. Activation of γδ T cells in malaria: interaction of cytokines and a schizont-associated Plasmodium falciparum antigen. J. Infect. Dis. 176, 233–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Orago, A. & Facer, C. Cytotoxicity of human natural killer (NK) cell subsets for Plasmodium falciparum erythrocytic schizonts: stimulation by cytokines and inhibition by neomycin. Clin. Exp. Immunol. 86, 22–29 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schofield, L. et al. CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283, 225–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Lee, S. Gonzalez-Aseguinolaza, G. & Nussenzweig, M. Disseminated candidiasis and hepatic malarial infection in mannose-binding-lectin-A-deficient mice. Mol. Cell Biol. 22, 8199–8203 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Klabunde, J. et al. Recognition of Plasmodium falciparum proteins by mannan-binding lectin, a component of the human innate immune system. Parasitol. Res. 88, 113–117 (2002).

    Article  PubMed  Google Scholar 

  72. Claudianos, C. et al. A malaria scavenger receptor-like protein essential for parasite development. Mol. Microbiol. 45, 1473–1484 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Campos, M. A. et al. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J. Immunol. 167, 416–423 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Gramzinski, R. et al. Interleukin-12- and γ-interferon-dependent protection against malaria conferred by CpG oligodeoxynucleotide in mice. Infect. Immun. 69, 1643–1649 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Su, Z, Tam, M. -F., Jankovic, D. & Stevenson, M. M. Vaccination with novel immunostimulatory adjuvants against blood-stage malaria in mice. Infect. Immun. 71, 5178–5187 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Near, K. A., Stowers, A. W., Jankovic, D. & Kaslow, D. C. Improved immunogenicity and efficacy of the recombinant 19-kilodalton merozoite surface protein 1 by addition of oligodeoxynucleotide and aluminum hydroxide gel in a murine malaria vaccine model. Infect. Immun. 70, 692–701 (2002). The first example of a pathogen-associated activator of the innate immune response that enhances vaccine-induced immunity against Plasmodium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ocana-Morgner, C., Mota, M. & Rodriguez, A. Malaria blood stage suppression of liver stage immunity by dendritic cells. J. Exp. Med. 197, 143–151 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Perry, J. A., Rush, A., Wilson, R. J., Olver, C. S. & Avery, A. C. Dendritic cells from malaria-infected mice are fully functional APC. J. Immunol. 172, 475–482 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Seixas, E., Cross, C., Quin, S. & Langhorne, J. Direct activation of dendritic cells by the malaria parasite, Plasmodium chabaudi chabaudi. Eur. J. Immunol. 31, 2970–2978 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Coban, C., Ishii, K., Sullivan, D. & Kumar, N. Purified malaria pigment (hemozoin) enhances dendritic cell maturation and modulates the isotype of antibodies induced by a DNA vaccine. Infect. Immun. 70, 3939–3943 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Urban, B. et al. Peripheral blood dendritic cells in children with acute Plasmodium falciparum malaria. Blood 98, 2859–2861 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Singh, R. P. et al. The role of IL-18 in blood-stage immunity against murine malaria Plasmoidum yoelii 265 and Plasmodium berghei ANKA. J. Immunol. 168, 4674–4681 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Luty, A. et al. Low interleukin-12 activity in severe Plasmodium falciparum malaria. Infect. Immun. 68, 3905–3915 (2000).

    Article  Google Scholar 

  85. Malaguarnera, L. et al. Increased levels of interleukin-12 in Plasmodium falciparum malaria: correlation with the severity of disease. Parasite Immunol. 24, 387–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Perkins, D., Weinberg, J. & Kremsner, P. Reduced interleukin-12 and transforming growth factor-β1 in severe childhood malaria: relationship of cytokine balance with disease severity. J. Infect. Dis. 182, 988–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Malaguarnera, L., Pignatelli, S., Musumeci, M., Simpore, J. & Musumeci, S. Plasma levels of interleukin-18 and interleukin-12 in Plasmodium falciparum malaria. Parasite Immunol. 24, 489–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Dodoo, D. et al. Absolute levels and ratios of pro-inflammatory and anti-inflammatory cytokine production in vitro predict clinical immunity to P. falciparum malaria. J. Infect. Dis. 185, 971–979 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Schmieg, J., Gonzalez-Asequinolaza, G. & Tsuji, M. The role of natural killer T cells and other T cell subsets against infection by the pre-erythrocytic stages of malaria parasites. Microbes Infect. 5, 499–506 (2003).

    Article  PubMed  Google Scholar 

  90. Hansen, D., Siomos, M., Buckingham, L., Scalzo, A. & Schofield, L. Regulation of murine cerebral malaria pathogenesis by CD1d-restricted NKT cells and the natural killer complex. Immunity 18, 391–402 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Procopio, D. O. et al. Glycosylphosphatidylinositol-anchored mucin-like glycoproteins from Trypanosoma cruzi bind to CD1d but do not elicit dominant innate or adaptive immune responses via the CD1d/NKT cell pathway. J. Immunol. 169, 3926–3933 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Langhorne, J., Morris-Jones, S., Casabo, L. G. & Goodier, M. The response of γδ T cells in malaria infections: a hypothesis. Res. Immunol. 145, 429–436 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Hviid, L. et al. Perturbation and proinflammatory type activation of V δ1+ γδT cells in African children with Plasmodium falciparum malaria. Infect. Immun. 69, 3190–3196 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hensmann, M. & Kwiatkowski, D. Cellular basis of early cytokine response to Plasmodium falciparum. Infect. Immun. 69, 2364–2371 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Elloso, M. M., van der Heyde, H. C., Vande Waa, J. A., Manning, D. D. & Weidanz, W. P. Inhibition of Plasmodium falciparum in vitro by human γδ T cells. J. Immunol. 153, 1187–1194 (1994).

    CAS  PubMed  Google Scholar 

  96. Constant, P. et al. Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands. Science 264, 267–270 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Tanaka, Y. et al. Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature 375, 155–158 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Elloso, M. M., van der Heyde, H. C., Troutt, A., Manning, D. D. & Weidanz, W. P. Human γδ T cell subset-proliferative response to malarial antigen in vitro depends on CD4+ T cells or cytokines that signal through components of the IL-2R. J. Immunol. 157, 2096–2102 (1996).

    CAS  PubMed  Google Scholar 

  99. Waterfall, M., Black, A. & Riley, E. γδ+ T cells preferentially respond to live rather than killed malaria parasites. Infect. Immun. 66, 2393–2398 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Morris-Jones, S., Goodier, M. & Langhorne, J. The response of γδ T cells to Plasmodium falciparum is dependent on activated CD4+ T cells and the recognition of MHC class I molecules. Immunol. 89, 405–412 (1996).

    Article  Google Scholar 

  101. van der Heyde, H. C. et al. γδ T cells function in cell-mediated immunity to acute blood-stage Plasmodium chabaudi adami malaria. J. Immunol. 154, 3985–3990 (1995).

    CAS  PubMed  Google Scholar 

  102. Seixas, E. & Langhorne, J. γδ T cells contribute to control of chronic parasitemia in Plasmodium chabaudi infections in mice. J. Immunol. 162, 2837–2841 (1999).

    CAS  PubMed  Google Scholar 

  103. Langhorne, J., Mombaerts, P. & Tonegawa, S. αβ and γδ T cells in the immune response to the erythrocytic stages of malaria in mice. Int. Immunol. 7, 1005–1011 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Weidanz, W. et al. Plasticity of immune responses suppressing parasitemia during acute Plasmodium chabaudi malaria. J. Immunol. 162, 7383–7388 (1999).

    CAS  PubMed  Google Scholar 

  105. Yanez, D., Batchelder, J., van der Heyde, H., Manning, D. & Weidanz, W. γδ T-cell function in pathogenesis of cerebral malaria in mice infected with Plasmodium berghei ANKA. Infect. Immun. 67, 446–448 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tsuji, M. et al. Phenotypic and functional properties of murine γδ T cell clones derived from malaria immunized αβ T cell-deficient mice. Int. Immunol. 8, 359–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Kopacz, J. & Kumar, N. Murine γδ T lymphocytes elicited during Plasmodium yoelii infection respond to Plasmodium heat shock proteins. Infect. Immun. 67, 57–63 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Moretta, A., Bottino, C., Mingari, M., Biassoni, R. & Moretta, L. What is a natural killer cell? Nature Immunol. 3, 6–8 (2002).

    Article  CAS  Google Scholar 

  109. Ojo-Amaize, E., Vilcek, J., Cochrane, A. & Nussenzweig, R. Plasmodium berghei sporozoites are mitogenic for murine T cells, induce interferon, and activate natural killer cells. J. Immunol. 133, 1005–1009 (1984).

    CAS  PubMed  Google Scholar 

  110. Pasquetto, V., Guidotti, L., Kakimi, K., Tsuji, M. & Chisari, F. Host-virus interactions during malaria infections in hepatitis B virus transgenic mice. J. Exp. Med. 192, 529–536 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Doolan, D. L. & Hoffman, S. L. IL-12 and NK cells are required for antigen-specific adaptive immunity against malaria initiated by CD8+ T cells in the Plasmodium yoelii model. J. Immunol. 163, 884–892 (1999).

    CAS  PubMed  Google Scholar 

  112. Artavanis-Tsakonas, K. & Riley, E. M. Innate immune response to malaria: rapid induction of IFN-γ from human NK cells by live Plasmodium falciparum-infected erythrocytes. J. Immunol. 169, 2956–2963 (2002). This paper provides evidence for direct, contact-dependent recognition of Plasmodium falciparum -infected erythrocytes by NK cells, implying that infected erythrocytes express ligands for NK-cell receptors.

    Article  CAS  PubMed  Google Scholar 

  113. Theander, T. G. et al. Enhancement of human natural cytotoxicity by Plasmodium falciparum antigen activated lymphocytes. Acta Trop. 44, 415–422 (1987).

    CAS  PubMed  Google Scholar 

  114. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Wattavidanage, J. et al. TNF-α*2 marks high risk of severe disease during Plasmodium falciparum malaria and other infections in Sri Lankans. Clin. Exp. Immunol. 115, 350–355 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Aidoo, M. et al. Tumor necrosis factor-α promoter variant 2 (TNF2) is associated with pre-term delivery, infant mortality, and malaria morbidity in western Kenya: Asembo Bay Cohort Project IX. Genet. Epidemiol. 21, 201–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Ubalee, R. et al. Strong association of a tumor necrosis factor-α promoter allele with cerebral malaria in Myanmar. Tissue Antigens 58, 407–410 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Uhrberg, M. et al. Human diversity in killer cell inhibitory receptor genes. Immunity 7, 753–763 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Rajalingam, R., Gardiner, C., Canavez, F., Vilches, C. & Parham, P. Identification of seventeen novel KIR variants: fourteen of them from two non-Caucasian donors. Tissue Antigens 57, 22–31 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Akalin, E. & Murphy, B. Gene polymorphisms and transplantation. Curr. Opin. Immunol. 13, 572–576 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Arbour, N. et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nature Genet. 25, 187–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Summerfield, J. et al. Mannose binding protein gene mutations associated with unusual and severe infections in adults. Lancet 345, 886–889 (1995).

    Article  CAS  PubMed  Google Scholar 

  123. Riley, E. M. Is T cell priming required for initiation of pathology in malaria infections? Immunol. Today 20, 228–233 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Engwerda, C. et al. Locally upregulated lymphotoxin α, not systemic tumor necrosis factor α, is the principle mediator of murine cerebral malaria. J. Exp. Med. 195, 1371–1377 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yoshimoto, T. et al. Pathogenic role of IL-12 in blood-stage murine malaria lethal strain Plasmodium berghei NK65 infection. J. Immunol 160, 5500–5505 (1998).

    CAS  PubMed  Google Scholar 

  126. Knight, J. C., Keating, B. J., Rockett, K. A. & Kwiatkowski, D. P. In vivo characterization of regulatory polymorphisms by allele-specific quantification of RNA polymerase loading. Nature Genet. 33, 469–475 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Omer, F. M. & Riley, E. M. TGF-β production is inversely correlated with severity of murine malaria infection. J. Exp. Med. 188, 39–48 (1998). This was the first study to show a causal relationship between the balance of pro-inflammatory and antiinflammatory cytokines and the outcome of malaria infections.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Omer, F., de Souza, J. & Riley, E. Differential induction of TGF-β regulates pro-inflammatory cytokine production and determines the outcome of lethal and nonlethal Plasmodium yoelii infections. J. Immunol. 171, 5430–5436 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Li, C., Sanni, L. A., Omer, F. M., Riley, E. M. & Langhorne, J. Pathology and mortality of Plasmodium chabaudi chabaudi infection in IL-10-deficient mice is ameliorated by anti-TNF-α and exacerbated by anti-TGF-β antibodies. Infect. Immun. 71, 4850–4856 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kurtzhals, J. A. L. et al. Low concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria. Lancet 351, 1768–1772 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Tsutsui, N. & Kamiyama, T. ransforming growth factor β-induced failure of resistance to infection with blood-stage Plasmodium chabaudi in mice. Infect. Immun. 67, 2306–2311 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Omer, F. M., de Souza, J. B., Corran, P. H., Sultan, A. A. & Riley, E. M. Activation of transforming growth factor-β by malaria parasite-derived metalloproteases and a thrombospondin-like molecule. J. Exp. Med. 198, 1817–1827 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ortaldo, J. R. et al. Mechanistic studies of transforming growth factor-β inhibition of IL-2-dependent activation of CD3 large granular lymphocyte functions. Regulation of IL-2Rβ (p75) signal transduction. J. Immunol. 146, 3791–3798 (1991).

    CAS  PubMed  Google Scholar 

  134. D'Andrea, A., Aste-Amezaga, M., Valiante, N., Ma, X., Kubin, M. & Trinchieri, G. Interleukin-10 (IL-10) inhibits human lymphocyte interferon γ-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J. Exp. Med. 178, 1041–1048 (1993).

    Article  CAS  PubMed  Google Scholar 

  135. Roura-Mir, C. & Moody, B. Sorting out self and microbial lipid antigens for CD1. Microbes Immun. 5, 1137–1148 (2003).

    CAS  Google Scholar 

  136. Sköld, M. & Behar, S. M. Role of CD1d-restricted NKT cells in microbial immunity. Infect. Immun. 71, 5447–5455 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hansen, D. S. et al. CD1d-restricted NKT cells contribute to malaria splenomegaly and enhance parasite-specific antibody responses. Eur. J. Immunol. 33, 2588–2598 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Weiss, W. R. et al. A plasmid encoding murine granulocyte–macrophage colony stimulating factor increases protection conferred by a malaria DNA vaccine. J. Immunol. 161, 2325–2332 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the assistance of M. Tam in the preparation of this manuscript. E.M.R. would like to acknowledge the contributions of K. Artavanis-Tsakonas, M. Walther, D. Korbel, D. Davis, K. McQueen and P. Parham to studies on innate immunity in her laboratory. The work is supported by the UK Medical Research Council, The Wellcome Trust, Boehringer Ingelheim Funds, The Burroughs Wellcome Fund and the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary M. Stevenson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

CD36

CD40

CD80

CD83

CD86

CTLA4

GM-CSF

ICAM1

IFN-γ

IL-2

IL-4

IL-8

IL-10

IL-12

LT-α

Myd88

TGF-β

Tlr2

Tlr4

Tlr6

TNF

FURTHER INFORMATION

World Health Organization web site

Literature and links detailing genetic determinants of susceptibility to malaria

Glossary

γδ T CELLS

Although γδ T-cell receptors are potentially diverse, circulating γδ T cells express a restricted set of these receptors and seem to recognize a relatively restricted set of ligands; this might reflect postnatal expansion of a small number of γδ T-cell clones by a few potent antigens, such as those expressed by mycobacteria or other widely distributed bacteria.

SEVERE COMBINED IMMUNODEFICIENT (SCID) MICE

Mice with this defect in their immune system do not have B or T cells and can, therefore, not mount adaptive immune responses.

NUDE MICE

A mutation in mice that causes both hairlessness and defective formation of the thymus, which results in a lack of mature T cells.

CYTOPHILIC ANTIBODY

Opsonizing antibody subclasses in mice (IgG2a and IgG2b) and in humans (IgG1 and IgG3), which mediate phagocytosis by macrophages.

UNMETHYLATED CpG MOTIFS

Sequences in bacterial DNA recognized by the mammalian immune system, which consist of unmethylated CpG dinucleotides in certain base contexts.

MIXED LYMPHOCYTE REACTION

(MLR). When peripheral-blood mononuclear cells or splenocytes from MHC-disparate donors are mixed together in the same culture, T helper cells from each donor recognize allogeneic MHC molecules on antigen-presenting cells from the other donor, and the T helper cells are induced to proliferate and release cytokines.

NKT CELLS

A heterogeneous population of lymphocytes with phenotypic and functional characteristics of both classical T cells and natural killer (NK) cells. Classical mouse NKT cells express the NK1.1 cell-surface marker, are T-cell receptor (TCR) Vα14+, recognize lipid-containing antigen in the context of the non-classical MHC class I molecule CD1d and are selectively activated by the synthetic ligand α-galactosylceramide. Various unconventional T cells have also now been described that express a diverse array of TCRs and are not CD1d restricted.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, M., Riley, E. Innate immunity to malaria. Nat Rev Immunol 4, 169–180 (2004). https://doi.org/10.1038/nri1311

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nri1311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing