Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytokine determinants of viral tropism

Key Points

  • Viral tropism is the ability of a given virus to productively infect a particular cell (cellular tropism), tissue (tissue tropism) or host species (host tropism). Various host innate immune antiviral cytokines, in particular the interferons (IFNs) and tumour necrosis factor (TNF), have a role in mediating viral tropism at these different levels.

  • Type I IFNs have a key role in determining the tropism of various viruses. These IFNs probably mediate their effects through the induction of interferon-stimulated genes; however, the exact genes that determine tropism for each virus have not been fully characterized.

  • Type II IFN has a more limited role in determining viral tropism, contributing mainly in the central nervous system.

  • The ability of type III IFNs to dictate viral tropism is largely determined by the tissue-specific expression of the type III IFN receptor. Type III IFNs probably have a major role in determining viral tropism in tissues and cells of epithelial origin.

  • TNF influences viral tropism through altering the expression of cell surface receptors required for viral infection. TNF can alter viral tropism in both a positive and negative manner.

  • Pro-inflammatory cytokines, particularly the IFNs, might be good therapeutic agents against various viruses that are capable of causing zoonotic infections. However, a better understanding of the mechanisms involved in these treatments is needed.

  • Defects in the IFN and TNF responsiveness of cancer cells can be exploited to create tumour-specific viral infections in an approach known as viral oncolysis. The synergistic responses of multiple cytokines might have a key role in this phenomenon.

Abstract

The specificity of a given virus for a cell type, tissue or species — collectively known as viral tropism — is an important factor in determining the outcome of viral infection in any particular host. Owing to the increased prevalence of zoonotic infections and the threat of emerging and re-emerging pathogens, gaining a better understanding of the factors that determine viral tropism has become particularly important. In this Review, we summarize our current understanding of the central role of antiviral and pro-inflammatory cytokines, particularly the interferons and tumour necrosis factor, in dictating viral tropism and how these cytokine pathways can be exploited therapeutically for cancer treatment and to better counter future threats from emerging zoonotic pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Levels of viral tropism.
Figure 2: Cytokine-mediated regulation of viral tropism.
Figure 3: Cytokine-mediated viral tropism in tumour tissues.

Similar content being viewed by others

References

  1. Brandenburg, B. & Zhuang, X. Virus trafficking — learning from single-virus tracking. Nature Rev. Microbiol. 5, 197–208 (2007).

    Article  CAS  Google Scholar 

  2. Hickman, H. D., Bennink, J. R. & Yewdell, J. W. Caught in the act: intravital multiphoton microscopy of host–pathogen interactions. Cell Host Microbe 5, 13–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berger, E. A., Murphy, P. M. & Farber, J. M. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 17, 657–700 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Lee, B. & Montaner, L. J. Chemokine immunobiology in HIV-1 pathogenesis. J. Leukoc. Biol. 65, 552–565 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Greve, J. M. et al. The major human rhinovirus receptor is ICAM-1. Cell 56, 839–847 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Tosi, M. F. et al. Induction of ICAM-1 expression on human airway epithelial cells by inflammatory cytokines: effects on neutrophil-epithelial cell adhesion. Am. J. Respir. Cell Mol. Biol. 7, 214–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Schneider-Schaulies, J. Cellular receptors for viruses: links to tropism and pathogenesis. J. Gen. Virol. 81, 1413–1429 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. McFadden, G. Poxvirus tropism. Nature Rev. Microbiol. 3, 201–213 (2005).

    Article  CAS  Google Scholar 

  9. Bieniasz, P. D. Intrinsic immunity: a front-line defense against viral attack. Nature Immunol. 5, 1109–1115 (2004).

    Article  CAS  Google Scholar 

  10. Ida-Hosonuma, M. et al. The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus. J. Virol. 79, 4460–4469 (2005). This study shows that the variation in the type I IFN response is an important determinant of the differential susceptibility of tissues to poliovirus infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O'Shea, J. J. & Murray, P. J. Cytokine signaling modules in inflammatory responses. Immunity 28, 477–487 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tato, C. M. & Cua, D. J. Snapshot: cytokines IV. Cell 132, 1062.e1–1062.e2 (2008).

    Google Scholar 

  13. Tato, C. M. & Cua, D. J. Snapshot: cytokines III. Cell 132, 900 (2008).

    CAS  PubMed  Google Scholar 

  14. Tato, C. M. & Cua, D. J. Snapshot: cytokines II. Cell 132, 500 (2008).

    CAS  PubMed  Google Scholar 

  15. Tato, C. M. & Cua, D. J. Snapshot: cytokines I. Cell 132, 324.e1–324.e2 (2008).

    Article  CAS  Google Scholar 

  16. Randall, R. E. & Goodbourn, S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J. Gen. Virol. 89, 1–47 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Stetson, D. B. & Medzhitov, R. Antiviral defense: interferons and beyond. J. Exp. Med. 203, 1837–1841 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pestka, S., Krause, C. D. & Walter, M. R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 202, 8–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Dumoutier, L. et al. Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-λ1: similarities with type I interferon signaling. J. Biol. Chem. 279, 32269–32274 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Kotenko, S. V. et al. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nature Immunol. 4, 69–77 (2003).

    Article  CAS  Google Scholar 

  21. Kotenko, S. V. & Langer, J. A. Full house: 12 receptors for 27 cytokines. Int. Immunopharmacol. 4, 593–608 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Doyle, S. E. et al. Interleukin-29 uses a type 1 interferon-like program to promote antiviral responses in human hepatocytes. Hepatology 44, 896–906 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Marcello, T. et al. Interferons α and λ inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131, 1887–1898 (2006).

    Article  PubMed  Google Scholar 

  24. Sadler, A. J., Latchoumanin, O., Hawkes, D., Mak, J. & Williams, B. R. An antiviral response directed by PKR phosphorylation of the RNA helicase A. PLoS Pathog. 5, e1000311 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Meurs, E., Krause, D., Robert, N., Silverman, R. H. & Hovanessian, A. G. The 2–5A system in control and interferon-treated K/BALB cells infected with encephalomyocarditis virus. Prog. Clin. Biol. Res. 202, 307–315 (1985).

    CAS  PubMed  Google Scholar 

  27. Meurs, E. F. et al. Constitutive expression of human double-stranded RNA-activated p68 kinase in murine cells mediates phosphorylation of eukaryotic initiation factor 2 and partial resistance to encephalomyocarditis virus growth. J. Virol. 66, 5805–5814 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Arnheiter, H. & Meier, E. Mx proteins: antiviral proteins by chance or by necessity? New Biol. 2, 851–857 (1990).

    CAS  PubMed  Google Scholar 

  29. Pavlovic, J., Schroder, A., Blank, A., Pitossi, F. & Staeheli, P. Mx proteins: GTPases involved in the interferon-induced antiviral state. Ciba Found. Symp. 176, 233–243 (1993).

    CAS  PubMed  Google Scholar 

  30. Stetson, D. B. & Medzhitov, R. Type I interferons in host defense. Immunity 25, 373–381 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Muller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921 (1994). This paper characterized type I IFN receptor-knockout mice and showed, using mice lacking either type I or type II IFN receptors, that, at least in response to some viruses, both IFN systems are essential for antiviral defence and are functionally non-redundant.

    Article  CAS  PubMed  Google Scholar 

  32. Finlay, B. B. & McFadden, G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124, 767–782 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 147, 258–267 (1957).

    Article  CAS  PubMed  Google Scholar 

  34. Gondois-Rey, F. et al. Hepatitis C virus is a weak inducer of interferon α in plasmacytoid dendritic cells in comparison with influenza and human herpesvirus type-1. PLoS One 4, e4319 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Krug, A. et al. Identification of CpG oligonucleotide sequences with high induction of IFN-α/β in plasmacytoid dendritic cells. Eur. J. Immunol. 31, 2154–2163 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Libri, N. A., Barker, S. J., Rosenberg, W. M. & Semper, A. E. A class C CpG toll-like receptor 9 agonist successfully induces robust interferon-alpha production by plasmacytoid dendritic cells from patients chronically infected with hepatitis C. J. Viral Hepat. 16, 315–324 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van Boxel-Dezaire, A. H., Rani, M. R. & Stark, G. R. Complex modulation of cell type-specific signaling in response to type I interferons. Immunity 25, 361–372 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Fiette, L. et al. Theiler's virus infection of 129Sv mice that lack the interferon alpha/beta or interferon gamma receptors. J. Exp. Med. 181, 2069–2076 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, F. et al. Disruption of Erk-dependent type I interferon induction breaks the myxoma virus species barrier. Nature Immunol. 5, 1266–1274 (2004). This study shows that type I IFN signalling mediates an innate cellular barrier to poxvirus infection.

    Article  CAS  Google Scholar 

  40. Mrkic, B. et al. Measles virus spread and pathogenesis in genetically modified mice. J. Virol. 72, 7420–7427 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Steinhoff, U. et al. Antiviral protection by vesicular stomatitis virus-specific antibodies in alpha/beta interferon receptor-deficient mice. J. Virol. 69, 2153–2158 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Garcia-Sastre, A. et al. The role of interferon in influenza virus tissue tropism. J. Virol. 72, 8550–8558 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ryman, K. D., Klimstra, W. B., Nguyen, K. B., Biron, C. A. & Johnston, R. E. Alpha/beta interferon protects adult mice from fatal Sindbis virus infection and is an important determinant of cell and tissue tropism. J. Virol. 74, 3366–3378 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wessely, R., Klingel, K., Knowlton, K. U. & Kandolf, R. Cardioselective infection with coxsackievirus B3 requires intact type I interferon signaling: implications for mortality and early viral replication. Circulation 103, 756–761 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Samuel, M. A. & Diamond, M. S. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J. Virol. 79, 13350–13361 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ireland, D. D., Stohlman, S. A., Hinton, D. R., Atkinson, R. & Bergmann, C. C. Type I interferons are essential in controlling neurotropic coronavirus infection irrespective of functional CD8 T cells. J. Virol. 82, 300–310 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Samuel, M. A. et al. PKR and RNase L contribute to protection against lethal West Nile Virus infection by controlling early viral spread in the periphery and replication in neurons. J. Virol. 80, 7009–7019 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ryman, K. D. et al. Sindbis virus translation is inhibited by a PKR/RNase L-independent effector induced by alpha/beta interferon priming of dendritic cells. J. Virol. 79, 1487–1499 (2005).

    Article  CAS  Google Scholar 

  49. Ryman, K. D., White, L. J., Johnston, R. E. & Klimstra, W. B. Effects of PKR/RNase L-dependent and alternative antiviral pathways on alphavirus replication and pathogenesis. Viral Immunol. 15, 53–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Tesfay, M. Z. et al. Alpha/beta interferon inhibits cap-dependent translation of viral but not cellular mRNA by a PKR-independent mechanism. J. Virol. 82, 2620–2630 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Duan, X., Nauwynck, H. J. & Pensaert, M. B. Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV). Arch. Virol. 142, 2483–2497 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Delputte, P. L., Van Breedam, W., Barbe, F., Van Reeth, K. & Nauwynck, H. J. IFN-α treatment enhances porcine Arterivirus infection of monocytes via upregulation of the porcine Arterivirus receptor sialoadhesin. J. Interferon Cytokine Res. 27, 757–766 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Meerts, P., Misinzo, G. & Nauwynck, H. J. Enhancement of porcine circovirus 2 replication in porcine cell lines by IFN-γ before and after treatment and by IFN-α after treatment. J. Interferon Cytokine Res. 25, 684–693 (2005). This is the first report of the enhancement of a viral infection by treatment with type I or type II IFN.

    Article  CAS  PubMed  Google Scholar 

  54. Navarini, A. A. et al. Increased susceptibility to bacterial superinfection as a consequence of innate antiviral responses. Proc. Natl Acad. Sci. USA 103, 15535–15539 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schroder, K., Hertzog, P. J., Ravasi, T. & Hume, D. A. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. van Boxel-Dezaire, A. H. & Stark, G. R. Cell type-specific signaling in response to interferon-γ. Curr. Top. Microbiol. Immunol. 316, 119–154 (2007).

    CAS  PubMed  Google Scholar 

  57. Young, H. A. & Bream, J. H. IFN-γ: recent advances in understanding regulation of expression, biological functions, and clinical applications. Curr. Top. Microbiol. Immunol. 316, 97–117 (2007).

    CAS  PubMed  Google Scholar 

  58. Kundig, T. M., Hengartner, H. & Zinkernagel, R. M. T cell-dependent IFN-γ exerts an antiviral effect in the central nervous system but not in peripheral solid organs. J. Immunol. 150, 2316–2321 (1993). This study is the first to show that IFNγ induces antiviral effects in a tissue-dependent manner.

    CAS  PubMed  Google Scholar 

  59. Trilling, M. et al. Gamma interferon-induced interferon regulatory factor 1-dependent antiviral response inhibits vaccinia virus replication in mouse but not human fibroblasts. J. Virol. 83, 3684–3695 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Binder, G. K. & Griffin, D. E. Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. Science 293, 303–306 (2001). This study shows that IFNγ acts in a tissue-dependent manner to clear alphavirus from the CNS and thereby control viral tropism.

    Article  CAS  PubMed  Google Scholar 

  61. Burdeinick-Kerr, R., Govindarajan, D. & Griffin, D. E. Noncytolytic clearance of sindbis virus infection from neurons by gamma interferon is dependent on Jak/STAT signaling. J. Virol. 83, 3429–3435 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Parra, B. et al. IFN-γ is required for viral clearance from central nervous system oligodendroglia. J. Immunol. 162, 1641–1647 (1999).

    CAS  PubMed  Google Scholar 

  63. Sheppard, P. et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nature Immunol. 4, 63–68 (2003).

    Article  CAS  Google Scholar 

  64. Ank, N., West, H. & Paludan, S. R. IFN-λ: novel antiviral cytokines. J. Interferon Cytokine Res. 26, 373–379 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Sommereyns, C., Paul, S., Staeheli, P. & Michiels, T. IFN-lambda (IFN-λ) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog. 4, e1000017 (2008). This study shows that IFNλ is expressed in a tissue-dependent manner in response to virus infection and that the IFNλ system specifically protects epithelia.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wang, F. et al. RIG-I mediates the co-induction of tumor necrosis factor and type I interferon elicited by myxoma virus in primary human macrophages. PLoS Pathog. 4, e1000099 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wang, J. et al. Differentiated human alveolar type II cells secrete antiviral IL-29 (IFN-λ1) in response to influenza A infection. J. Immunol. 182, 1296–1304 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Bartlett, N. W., Buttigieg, K., Kotenko, S. V. & Smith, G. L. Murine interferon lambdas (type III interferons) exhibit potent antiviral activity in vivo in a poxvirus infection model. J. Gen. Virol. 86, 1589–1596 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Mordstein, M. et al. Interferon-λ contributes to innate immunity of mice against influenza A virus but not against hepatotropic viruses. PLoS Pathog. 4, e1000151 (2008). This study shows that the IFNλ-induced innate immune response against influenza A virus depends on the route of virus administration.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Benedict, C. A., Banks, T. A. & Ware, C. F. Death and survival: viral regulation of TNF signaling pathways. Curr. Opin. Immunol. 15, 59–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Rahman, M. M. & McFadden, G. Modulation of tumor necrosis factor by microbial pathogens. PLoS Pathog. 2, e4 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ihnatko, R. & Kubes, M. TNF signaling: early events and phosphorylation. Gen. Physiol. Biophys. 26, 159–167 (2007).

    CAS  PubMed  Google Scholar 

  73. Mestan, J. et al. Antiviral effects of recombinant tumour necrosis factor in vitro. Nature 323, 816–819 (1986).

    Article  CAS  PubMed  Google Scholar 

  74. Wong, G. H. & Goeddel, D. V. Tumour necrosis factors alpha and beta inhibit virus replication and synergize with interferons. Nature 323, 819–822 (1986).

    Article  CAS  PubMed  Google Scholar 

  75. Bartee, E., Mohamed, M. R., Lopez, M. C., Baker, H. V. & McFadden, G. The addition of tumor necrosis factor plus beta interferon induces a novel synergistic antiviral state against poxviruses in primary human fibroblasts. J. Virol. 83, 498–511 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Bergelson, J. M. et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Carson, S. D., Hobbs, J. T., Tracy, S. M. & Chapman, N. M. Expression of the coxsackievirus and adenovirus receptor in cultured human umbilical vein endothelial cells: regulation in response to cell density. J. Virol. 73, 7077–7079 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Vincent, T., Pettersson, R. F., Crystal, R. G. & Leopold, P. L. Cytokine-mediated downregulation of coxsackievirus-adenovirus receptor in endothelial cells. J. Virol. 78, 8047–8058 (2004). This study shows that pro-inflammatory cytokines decrease CAR expression with a concomitant decrease in adenovirus binding, indicating the effect of cell physiology on the function of CAR and the potential effect of inflammation on the ability of adenovirus to infect endothelial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bailer, R. T., Lee, B. & Montaner, L. J. IL-13 and TNF-α inhibit dual-tropic HIV-1 in primary macrophages by reduction of surface expression of CD4, chemokine receptors CCR5, CXCR4 and post-entry viral gene expression. Eur. J. Immunol. 30, 1340–1349 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Takano, T., Hohdatsu, T., Toda, A., Tanabe, M. & Koyama, H. TNF-α, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages. Virology 364, 64–72 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Moutabarrik, A. et al. Cytokine-mediated regulation of the surface expression of complement regulatory proteins, CD46(MCP), CD55(DAF), and CD59 on human vascular endothelial cells. Lymphokine Cytokine Res. 12, 167–172 (1993).

    CAS  PubMed  Google Scholar 

  82. Krautkramer, E. & Zeier, M. Hantavirus causing hemorrhagic fever with renal syndrome enters from the apical surface and requires decay-accelerating factor (DAF/CD55). J. Virol. 82, 4257–4264 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Herzberg, F. et al. IL-4 and TNF-α induce changes in integrin expression and adhesive properties and decrease the lung-colonizing potential of HT-29 colon carcinoma cells. Clin. Exp. Metastasis 14, 165–175 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Nista, A., Mattioni, M., Gismondi, A., Palmieri, G. & Santoni, A. β1-Integrin expression and function in human bladder cancer cells: modulation by TNFα. Anticancer Res. 16, 581–588 (1996).

    CAS  PubMed  Google Scholar 

  85. Feire, A. L., Koss, H. & Compton, T. Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. Proc. Natl Acad. Sci. USA 101, 15470–15475 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vana, G. & Westover, K. M. Origin of the 1918 Spanish influenza virus: a comparative genomic analysis. Mol. Phylogenet. Evol. 47, 1100–1110 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Wang, L. F. et al. Review of bats and SARS. Emerg. Infect. Dis. 12, 1834–1840 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Holmes, E. C. On the origin and evolution of the human immunodeficiency virus (HIV). Biol. Rev. Camb. Philos. Soc. 76, 239–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Baxby, D. & Bennett, M. Poxvirus zoonoses. J. Med. Microbiol. 46, 17–20, 28–33 (1997).

    CAS  PubMed  Google Scholar 

  90. Hawranek, T. et al. Feline orthopoxvirus infection transmitted from cat to human. J. Am. Acad. Dermatol. 49, 513–518 (2003).

    Article  PubMed  Google Scholar 

  91. Lewis-Jones, S. Zoonotic poxvirus infections in humans. Curr. Opin. Infect. Dis. 17, 81–89 (2004).

    Article  PubMed  Google Scholar 

  92. Schupp, P. et al. Cowpox virus in a 12-year-old boy: rapid identification by an orthopoxvirus-specific polymerase chain reaction. Br. J. Dermatol. 145, 146–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. CDC. Outbreak of swine-origin influenza A (H1N1) virus infection — Mexico, March–April 2009. Morb. Mortal. Wkly Rep. 58, 467–470 (2009).

  94. Sidwell, R. W. et al. Antiviral and immunomodulating inhibitors of experimentally-induced Punta Toro virus infections. Antiviral Res. 25, 105–122 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Morrill, J. C., Czarniecki, C. W. & Peters, C. J. Recombinant human interferon-γ modulates Rift Valley fever virus infection in the rhesus monkey. J. Interferon Res. 11, 297–304 (1991).

    Article  CAS  PubMed  Google Scholar 

  96. Morrill, J. C., Jennings, G. B., Cosgriff, T. M., Gibbs, P. H. & Peters, C. J. Prevention of Rift Valley fever in rhesus monkeys with interferon-α. Rev. Infect. Dis. 11, S815–S825 (1989).

    Article  CAS  PubMed  Google Scholar 

  97. Subramanian, G. M. et al. Potent in vitro activity of the albumin fusion type 1 interferons (albumin-interferon-α and albumin-interferon-β) against RNA viral agents of bioterrorism and the severe acute respiratory syndrome (SARS) virus. Chemotherapy 54, 176–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Pinto, A. J., Morahan, P. S., Brinton, M., Stewart, D. & Gavin, E. Comparative therapeutic efficacy of recombinant interferons-α, -β, and -γ against alphatogavirus, bunyavirus, flavivirus, and herpesvirus infections. J. Interferon Res. 10, 293–298 (1990).

    Article  CAS  PubMed  Google Scholar 

  99. Pinto, A. J., Morahan, P. S. & Brinton, M. A. Comparative study of various immunomodulators for macrophage and natural killer cell activation and antiviral efficacy against exotic RNA viruses. Int. J. Immunopharmacol. 10, 197–209 (1988).

    Article  CAS  PubMed  Google Scholar 

  100. Kelly, E. & Russell, S. J. History of oncolytic viruses: genesis to genetic engineering. Mol. Ther. 15, 651–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Liu, T. C., Galanis, E. & Kirn, D. Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nature Clin. Pract. Oncol. 4, 101–117 (2007).

    Article  CAS  Google Scholar 

  102. Vaha-Koskela, M. J., Heikkila, J. E. & Hinkkanen, A. E. Oncolytic viruses in cancer therapy. Cancer Lett. 254, 178–216 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  103. Barber, G. N. Vesicular stomatitis virus as an oncolytic vector. Viral Immunol. 17, 516–527 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Bartee, E. & McFadden, G. Human cancer cells have specifically lost the ability to induce the synergistic state caused by tumor necrosis factor plus interferon-β. Cytokine 28 July 2009 (doi:10.1016/j.cyto.2009.06.006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Stanford, M. M. et al. Myxoma virus oncolysis of primary and metastatic B16F10 mouse tumors in vivo. Mol. Ther. 16, 52–59 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Stojdl, D. F. et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nature Med. 6, 821–825 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Cattaneo, R., Miest, T., Shashkova, E. V. & Barry, M. A. Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nature Rev. Microbiol. 6, 529–540 (2008).

    Article  CAS  Google Scholar 

  108. Muster, T. et al. Interferon resistance promotes oncolysis by influenza virus NS1-deletion mutants. Int. J. Cancer 110, 15–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Egorov, A. et al. Transfectant influenza A viruses with long deletions in the NS1 protein grow efficiently in Vero cells. J. Virol. 72, 6437–6441 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Garcia-Sastre, A. et al. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252, 324–330 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Lee, B. et al. Oncolysis of human gastric cancers by an E1B 55 kDa-deleted YKL-1 adenovirus. Cancer Lett. 185, 225–233 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Nemunaitis, J. et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 60, 6359–6366 (2000).

    CAS  PubMed  Google Scholar 

  113. Kirn, D. H., Wang, Y., Le Boeuf, F., Bell, J. & Thorne, S. H. Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Med. 4, e353 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  114. Shashkova, E. V., Spencer, J. F., Wold, W. S. & Doronin, K. Targeting interferon-alpha increases antitumor efficacy and reduces hepatotoxicity of E1A-mutated spread-enhanced oncolytic adenovirus. Mol. Ther. 15, 598–607 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Shashkova, E. V., Kuppuswamy, M. N., Wold, W. S. & Doronin, K. Anticancer activity of oncolytic adenovirus vector armed with IFN-α and ADP is enhanced by pharmacologically controlled expression of TRAIL. Cancer Gene Ther. 15, 61–72 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Hevehan, D. L., Miller, W. M. & Papoutsakis, E. T. Differential expression and phosphorylation of distinct STAT3 proteins during granulocytic differentiation. Blood 99, 1627–1637 (2002). This study shows that the selective expression of STATs and their activation are important determinants of cell development and provides a molecular basis for evaluating the effects of various environmental factors on the STAT-mediated signalling pathway.

    Article  CAS  PubMed  Google Scholar 

  117. Bartee, E., Mohamed, M. R. & McFadden, G. Tumor necrosis factor and interferon: cytokines in harmony. Curr. Opin. Microbiol. 11, 378–383 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tang, H., Banks, K. E., Anderson, A. L. & McLachlan, A. Hepatitis B virus transcription and replication. Drug News Perspect. 14, 325–334 (2001).

    CAS  PubMed  Google Scholar 

  119. van Riel, D. et al. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am. J. Pathol. 171, 1215–1223 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lopez-Guerrero, J. A., Rayet, B., Tuynder, M., Rommelaere, J. & Dinsart, C. Constitutive activation of U937 promonocytic cell clones selected for their resistance to parvovirus H-1 infection. Blood 89, 1642–1653 (1997).

    CAS  PubMed  Google Scholar 

  121. Steed, A., Buch, T., Waisman, A. & Virgin, H. W. T. Gamma interferon blocks gammaherpesvirus reactivation from latency in a cell type-specific manner. J. Virol. 81, 6134–6140 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Florida College of Medicine, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant McFadden.

Related links

Related links

FURTHER INFORMATION

http://www.mgm.ufl.edu/faculty/GMcFadden.htm

Glossary

Antiviral state

An intracellular state in which virus replication is blocked, restricting the spread of virus to neighbouring cells. By signalling through the type I IFN receptor, IFNs activate the inducible expression of hundreds of genes that together establish the antiviral state.

Zoonotic infection

The ability of a given virus to cross the host species barrier from its current or long-term evolutionary host to humans, causing disease.

Oncolytic virotherapy

The treatment of cancer by using a virus specifically tailored to infect cancer cells while leaving normal cells unharmed. The engineering of such viruses involves ensuring that the viruses can replicate only inside cancer cells, lysing the cells when they exit, and ensuring a high dosage at the site of the tumour.

Interferon-stimulated genes

(ISGs). Genes that are induced or expressed as a result of IFN action and encode proteins such as: PKR, a dsRNA-activated kinase that phosphorylates eIF2α with a consequent blockade of the translation of most cellular and viral mRNAs; oligoadenylate synthases, which produce 2'-5' oligoadenylates, which in turn activate the latent nuclease RNase L, resulting in the degradation of both viral and host RNA transcripts; and myxovirus resistance proteins, which possibly interfere with viral assembly and trafficking in the cell.

Plasmacytoid dendritic cell

An immature dendritic cell with a morphology that resembles that of a plasma cell. Plasmacytoid dendritic cells produce type I IFNs (that is, IFNα and IFNβ) in response to viral infection.

IFN-stimulated gene factor 3 (ISGF3) complex

An IFN-induced signal transduction and transcription activation complex. ISGF3 is assembled from three proteins, STAT1, STAT2 and interferon-regulatory factor 9. Of these components, STAT2 provides a fundamental and essential transcription activation function.

Oligodendrocyte

A type of glial cell that creates the myelin sheath that insulates axons and improves the speed and reliability of signal transmission by neurons.

Alveolar type II (ATII) epithelial cell

ATII cells are cuboidal in shape, with short microvilli along their apical surface. They secrete a pulmonary surfactant that decreases the surface tension of the alveolar surface, allowing the alveoli to expand during inspiration and preventing their collapse during expiration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McFadden, G., Mohamed, M., Rahman, M. et al. Cytokine determinants of viral tropism. Nat Rev Immunol 9, 645–655 (2009). https://doi.org/10.1038/nri2623

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nri2623

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing