Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Poxvirus tropism

Abstract

Despite the success of the WHO-led smallpox eradication programme a quarter of a century ago, there remains considerable fear that variola virus, or other related pathogenic poxviruses such as monkeypox, could re-emerge and spread disease in the human population. Even today, we are still mostly ignorant about why most poxvirus infections of vertebrate hosts show strict species specificity, or how zoonotic poxvirus infections occur when poxviruses occasionally leap into novel host species. Poxvirus tropism at the cellular level seems to be regulated by intracellular events downstream of virus binding and entry, rather than at the level of specific host receptors as is the case for many other viruses. This review summarizes our current understanding of poxvirus tropism and host range, and discusses the prospects of exploiting host-restricted poxvirus vectors for vaccines, gene therapy or tissue-targeted oncolytic viral therapies for the treatment of human cancers.

Key Points

  • Poxvirus host range varies markedly ? some viruses, such as variola and molluscum contagiosum virus (both of which are human-specific), exhibit strict species tropism, whereas others such as cowpox virus are able to infect multiple host species.

  • Members of four of the eight genera of chordopoxviruses can zoonotically infect man. For example, monkeypox virus can cause severe smallpox-like disease in humans that clinically resembles variola virus.

  • The species tropism that is exhibited by many poxviruses in terms of causing disease is frequently quite different from the range of cultured cells that can be infected by these viruses.

  • Specific host-cell receptors do not mediate the distinction between cells that are permissive as opposed to non-permissive for poxvirus infection. Rather, restrictive host cells fail to support the full replication cycle of the infecting poxvirus at a point downstream of binding and entry.

  • A variety of poxviral host-range genes have been identified that contribute to the control of permissive versus non-permissive infection of cultured mammalian cells. The gene products of these host-range genes regulate the ability of the virus to complete its cytoplasmic replication cycle.

  • The development of host-restricted vaccines, like modified vaccinia Ankara (MVA), that do not replicate in humans but that retain potent immunogenicity, will provide safer platforms for recombinant vaccines.

  • Another advance has been the development of poxvirus-based oncolytic vectors that replicate preferentially in human tumour cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of host-restricted poxviruses.
Figure 2: All poxviruses are morphologically similar.
Figure 3: Poxvirus replication cycle.
Figure 4: Intracellular signalling events modulate poxvirus tropism.
Figure 5: Origin of modified vaccinia Ankara strain.

Similar content being viewed by others

References

  1. Morens, D. M., Folkers, G. K. & Fauci, A. S. The challenge of emerging and re-emerging infectious diseases. Nature 430, 242–249 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Finlay, B. B., See, R. H. & Brunham, R. C. Rapid response research to emerging infectious diseases: lessons from SARS. Nature 2, 602–607 (2004).

    CAS  Google Scholar 

  3. Smith, G. L. & McFadden, G. Smallpox: anything to declare? Nature Rev. Immunol. 2, 521–528 (2002).

    Article  CAS  Google Scholar 

  4. Tucker, J. B. Scourge: The Once and Future Threat of Smallpox (Atlantic Monthly Press, New York, 2001).

    Google Scholar 

  5. Alibek, K. Biohazard (Random House, New York, 1999).

    Google Scholar 

  6. Harrison, S. C. et al. Discovery of antivirals against smallpox. Proc. Natl Acad. Sci. USA 101, 11178–11192 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Bray, M. & Roy, C. J. Antiviral prophylaxis of smallpox. J. Antimicrob. Chemother. 54, 1–5 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Lewis-Jones, S. Zoonotic poxvirus infection in humans. Curr. Opin. Infect. Dis. 17, 81–89 (2004). A useful summary of the poxviruses that can zoonotically infect man, which indicates which of these infections are clinically important.

    Article  PubMed  Google Scholar 

  9. Frey, S. E. & Belshe, R. B. Poxvirus zoonoses ? putting pocks into context. N. Engl. J. Med. 350, 324–327 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Esposito, J. J. & Fenner, F. in Fields Virology 4th edn (eds Knipe, D. M. & Howley, P. M.) 2885–2921 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  11. Reed, K. D. et al. The detection of monkeypox in humans in the western Hemisphere. N. Engl. J. Med. 350, 342–350 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Di Giulio, D. B. & Eckburg, P. B. Human monkeypox: an emerging zoonosis. Lancet Infect. Dis. 4, 15–25 (2004).

    Article  PubMed  Google Scholar 

  13. Hutin, Y. J. F. et al. Outbreak of human monkeypox, Democratic Republic of Congo, 1996–1997. Emerg. Infect. Dis. 7, 434–438 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meyer, H. et al. Outbreaks of disease suspected of being due to human monkeypox virus infection in the Democratic Republic of Congo in 2001. J. Clin. Microbiol. 40, 2919–2921 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Breman, J. G. in Emerging Infections (eds Schield, W. M., Craig, W. A. & Hughes, J. M.) 45–67 (ASM Press, Washington DC, 2000).

    Book  Google Scholar 

  16. Guarner, J. et al. Monkeypox transmission and pathogenesis in prairie dogs. Emerg. Infect. Dis. 10, 426–431 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fenner, F. & Ratcliffe, F. N. Myxomatosis (Cambridge Univ. Press, UK, 1965).

    Google Scholar 

  18. Sypula, J., Wang, F., Ma, Y., Bell, J. & McFadden, G. Myxoma virus tropism in human tumor cells. Gene Ther. Mol. Biol. 8, 103–114 (2004).

    Google Scholar 

  19. Dimitrov, D. S. Virus entry: molecular mechanisms and biomedical applications. Nature Rev. Microbiol. 2, 109–122 (2004).

    Article  CAS  Google Scholar 

  20. Smith, A. E. & Helenius, A. How viruses enter animal cells. Science 304, 237–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Lalani, A. S. et al. Use of chemokine receptors by poxviruses. Science 286, 1968–1971 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Eppstein, D. A. et al. Epidermal growth factor receptor occupancy inhibits vaccinia virus infection. Nature 318, 663–665 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Johnston, J. B. et al. Role of the serine–threonine kinase PAK-1 in myxoma virus replication. J. Virol. 77, 5877–5888 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seet, B. T. et al. Poxviruses and immune evasion. Annu. Rev. Immunol. 21, 377–423 (2003). Summarizes the known immunomodulator and host-range gene families found in poxviruses, and documents the members that can be encoded by different poxviruses.

    Article  CAS  PubMed  Google Scholar 

  25. Moss, B. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 2849–2883 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  26. Upton, C., Slack, S., Hunter, A. L., Ehlers, A. & Roper, R. L. Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J. Virol. 77, 7590–7600 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McLysaght, A., Baldi, P. F. & Gaut, B. S. Extensive gene gain associated with adaptive evoluton of poxviruses. Proc. Natl Acad. Sci. USA 100, 15655–15660 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Gubser, C., Hue, S., Kellam, P. & Smith, G. L. Poxvirus genomes: a phylogenetic analysis. J. Gen. Virol. 85, 105–117 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Johnston, J. B. & McFadden, G. Technical knockout: understanding poxvirus pathogenesis by selectively deleting viral immunomodulatory genes. Cell. Microbiol. 9, 695–705 (2004).

    Article  CAS  Google Scholar 

  30. Turner, P. C. & Moyer, R. W. Poxvirus immune modulators: functional insights from animal models. Virus Res. 88, 35–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Smith, S. A. & Kotwal, G. J. Immune response to poxvirus infections in various animals. Crit. Rev. Microbiol. 28, 149–185 (2002).

    Article  PubMed  Google Scholar 

  32. Smith, G. L., Vanderplasschen, A. & Law, M. The formation and function of extracellular enveloped vaccinia virus. J. Gen. Virol. 83, 2915–2931 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Vanderplasschen, A., Hollinshead, M. & Smith, G. L. Intracellular and extracellular vaccinia virions enter cells by different mechanisms. J. Gen. Virol. 79, 877–887 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Vanderplasschen, A. & Smith, G. L. A novel virus-binding assay using confocal microscopy: Demonstration that the intracellular and extracellular vaccinia virions bind to different cellular receptors. J. Virol. 71, 4032–4041 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Locker, J. K. et al. Entry of the two infectious forms of vaccinia virus at the plasma membane is signaling-dependent for the IMV but not the EEV. Mol. Biol. Cell 11, 2497–2511 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blasco, R., Sisler, J. R. & Moss, B. Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein ? effect of a point mutation in the lectin homology domain of the A34R gene. J. Virol. 67, 3319–3325 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin, C. L., Chung, C. S., Heine, H. G. & Chang, W. Vaccinia virus envelope H3L protein binds to cell surface heparan sulfate and is important for intracellular mature virion morphogenesis and virus infection in vitro and in vivo. J. Virol. 74, 3353–3365 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hsiao, J. -C., Chung, C. -S. & Chang, W. Vaccinia envelope D8L protein binds to cell surface chondroitin sulfate and mediates intracellular mature virions adsorption to cells. J. Virol. 73, 8750–8761 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chung, C. -S., Hsiao, J. -C., Chang, Y. -S. & Chang, W. A27L protein mediates vaccinia virus interaction with cell surface heparan sulfate. J. Virol. 72, 1577–1585 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hsiao, J. -C., Chung, C. -S. & Chang, W. Cell surface proteoglycans are necessary for A27L protein-mediated cell fusion: identification of the N-terminal region of A27L protein as the glycosaminoglycan-binding domain. J. Virol. 72, 8374–8379 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Senkevich, T. G., Ward, B. M. & Moss, B. Vaccinia virus entry into cells is dependent on a virion surface protein encoded by the A28L gene. J. Virol. 78, 2357–2366 (2004). Describes the first poxviral protein (A28 of vaccinia virus) shown to be critical for the fusion/entry of poxviruses into mammalian cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Masters, J. et al. Poxvirus infection rapidly activates tyrosine kinase signal transduction. J. Biol. Chem. 276, 48371–48375 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. de Magalhaes, J. C. et al. A mitogenic signal triggered at an early stage of vaccinia virus infection ? implication of MEK/ERK and protein kinase in a virus multiplication. J. Biol. Chem. 276, 38353–38360 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Andrade, A. A. et al. The vaccinia virus-stimulated mitogen-activated protein kinase (MAPK) pathway is required for virus multiplication. Biochem. J. 381, 437–446 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Greber, U. F. Signaling in viral entry. Cell. Mol. Life Sci. 59, 608–626 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Boehme, K. W. & Compton, T. Innate sensing of viruses by Toll-like receptors. J. Virol. 78, 7867–7873 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bowie, A. et al. A46R and A52R from vaccinia virus are antagonists of host IL-1 and Toll-like receptor signaling. Proc. Natl Acad. Sci. USA 97, 10162–10167 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Harte, M. T. et al. The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J. Exp. Med. 197, 343–351 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Broyles, S. S. Vaccinia virus transcripton. J. Gen. Virol. 84, 2293–2303 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Rosales, R., Sutter, G. & Moss, B. A cellular factor is required for transcription of vaccinia viral intermediate-stage genes. Proc. Natl Acad. Sci. USA 91, 3794–3798 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Rosales, R., Harris, N., Ahn, B. Y. & Moss, B. Purification and identification of a vaccinia virus-encoded intermediate stage promoter-specific transcription factor that has homology to eukaryotic transcription factor SII (TFIIS) and an additional role as a viral RNA polymerase subunit. J. Biol. Chem. 269, 14260–14267 (1994).

    CAS  PubMed  Google Scholar 

  52. Sanz, P. & Moss, B. A new vaccinia virus intermediate transcription factor. J. Virol. 72, 6880–6883 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gunasinghe, S. K., Hubbs, A. E. & Wright, C. F. A vaccinia virus late transcription factor with biochemical and molecular identity to a human cellular protein. J. Biol. Chem. 273, 27524–27530 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Wright, C. F., Hubbs, A. E., Gunasinghe, S. K. & Oswald, B. W. A vaccinia virus late transcription factor copurifies with a factor that binds to a viral late promoter and is complemented by extracts from uninfected HeLa cells. J. Virol. 72, 1446–1451 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Broyles, S. S., Liu, X., Zhu, M. & Kremer, M. Transcription factor YY1 is a vaccinia virus late promoter activator. J. Biol. Chem. 274, 35662–35667 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Katsafanas, G. C. & Moss, B. Vaccinia virus intermediate stage transcription is complemented by Ras-GTPase-activating protein SH3 domain-binding protein (G3BP) and cytoplasmic activation/proliferation-associated protein (p137) individually or as a heterodimer. J. Biol. Chem. 279, 52210–52217 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Smith, G. L., Murphy, B. J. & Law, M. Vaccinia virus motility. Annu. Rev. Microbiol. 57, 323–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Smith, G. L. & Law, M. The exit of vaccinia virus from infected cells. Virus Res. 106, 189–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Katz, E., Ward, B. M., Weisberg, A. S. & Moss, B. Mutations in the vaccinia virus A33R and B5R envelope proteins that enhance release of extracellular virions and eliminate formation of actin-containing microvilli without preventing tyrosine phosphorylation of the A36R protein. J. Virol. 77, 12266–12275 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Newsome, T. P., Scaplehorn, N. & Way, M. Src mediates a switch from microtubule- to actin-based motility of vaccinia virus. Science 306, 124–129 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926–929 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. McFadden, G., Pace, W. E., Purres, J. & Dales, S. Biogenesis of poxvirus: transitory expression of Molluscum contagiosum early functions. Virology 94, 297–313 (1979).

    Article  CAS  PubMed  Google Scholar 

  63. Li, Y., Yuan, S. & Moyer, R. W. The non-permissive infection of insect (Gypsy Moth) Ld-652 cells by vaccinia virus. Virology 248, 74–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Wali, A. & Strayer, D. S. Regulation of p53 gene expression by a poxviral transcription factor. Virology 224, 63–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Wali, A. & Strayer, D. S. Infection with vaccinia virus alters regulation of cell cycle progression. DNA Cell Biol. 18, 837–843 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Santos, C. R., Vega, F. M., Blanco, S., Barcia, R. & Lazo, P. A. The vaccinia virus B1R kinase induces p53 downregulation by an Mdm2-dependent mechanism. Virology 328, 254–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Guerra, S. et al. Cellular gene expression survey of vaccinia virus infection of human HeLa cells. J. Virol. 77, 6493–6506 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guerra, S. et al. Microarray analysis reveals characteristic changes of host cell gene expression in response to attenuated modified vaccinia virus Ankara infection of human HeLa cells. J. Virol. 78, 5820–5834 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Senkevich, T. G. et al. Genome sequence of a human tumorigenic poxvirus: prediction of specific host response-evasion genes. Science 273, 813–816 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Senkevich, T. G., Koonin, E. V., Bugert, J. J., Darai, G. & Moss, B. The genome of molluscum contagiosum virus: analysis and comparison with other poxviruses. Virology 233, 19–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Brown, M. et al. Antigen gene transfer to cultured human dendritic cells using recombinant avipoxvirus vectors. Cancer Gene Ther. 6, 238–245 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Brown, M. et al. Dendritic cells infected with recombinant fowlpox virus vectors are potent and long-acting stimulators of transgene-specific class 1 restricted T lymphocyte activity. Gene Ther. 7, 1680–1689 (2001).

    Article  CAS  Google Scholar 

  73. Engelmayer, J. et al. Mature dendritic cells infected with canarypox virus elicit strong anti-human immunodeficiency virus CD8+ and CD4+ T-cell responses from chronically infected individuals. J. Virol. 75, 2142–2153 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ignatius, R. et al. Canarypox virus-induced maturation of dendritic cells is mediated by apoptotic cell death and tumor necrosis factor-α secretion. J. Virol. 74, 11329–11338 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Drillien, R., Spehner, D. & Hanau, D. Modified vaccinia virus Ankara induces moderate activation of human dendritic cells. J. Gen. Virol. 85, 2167–2175 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Hurnlova, Z., Vokurka, M., Esteban, M. & Melkova, Z. Vaccinia virus induces apoptosis of infected macrophages. J. Gen. Virol. 83, 2821–2832 (2002).

    Article  Google Scholar 

  77. Jenne, L., Hauser, C., Arrighi, J. F., Saurat, J. H. & Hugin, A. W. Poxvirus as a vector to transduce human dendritic cells for immunotherapy: abortive infection but reduced APC function. Gene Ther. 7, 1575–1583 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Bronte, V. et al. Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Immunology 94, 3183–3188 (1997).

    CAS  Google Scholar 

  79. Engelmayer, J. et al. Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J. Immunol. 163, 6762–6768 (1999).

    CAS  PubMed  Google Scholar 

  80. Drillien, R., Spehner, D., Bohbot, A. & Hanau, D. Vaccinia virus-related events and phenotypic changes after infection of dendritic cells derived from human monocytes. Virology 268, 471–481 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Hung, J. -J., Chung, C. -S. & Chang, W. Molecular chaperone Hsp90 is important for vaccinia virus growth in cells. J. Virol. 76, 1379–1390 (2002). One of the few studies to identify a host factor, in this case Hsp60, that is specifically required for efficient completion of the viral morphogenic pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sen, G. C. Viruses and interferon. Annu. Rev. Microbiol. 55, 255–281 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Samuel, C. E. Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Katze, M. G., He, Y. & Gale, M. Jr. Viruses and interferon: a fight for supremacy. Nature Rev. Immunol. 2, 675–687 (2002).

    Article  CAS  Google Scholar 

  85. Wang, F. et al. Disruption of ERK 1/2 MAP kinase-dependent induction of type I interferon breaks myxoma virus species barrier. Nature Immunol. 5, 1266–1274 (2004). The first demonstration that the host species barrier for any poxvirus can be manipulated at the level of signal transduction, and shows that the induction of interferon by the infecting poxvirus is a crucial determinant of myxoma virus tropism.

    Article  CAS  Google Scholar 

  86. Johnston, J. B., Nazarian, S. H., Natale, R. & McFadden, G. Myxoma virus infection of primary human fibroblasts varies with cellular age and is regulated by host interferon responses. Virology (in the press).

  87. Ole, K. L. & Pickup, D. J. Cowpox virus and other members of the orthopoxvirus genus interfere with the regulation of NF-κB activation. Virology 288, 175–187 (2001).

    Article  CAS  Google Scholar 

  88. Gil, J., Rullas, J., Alcami, J. & Estaban, M. MC159L protein from the poxvirus molluscum contagiosum virus inhibits NF-κ B activation and apoptosis induced by PKR. J. Gen. Virol. 82, 3027–3034 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Shisler, J. L. & Jin, X. -L. The vaccinia virus K1L gene product inhibits host NF-κBα degradation. J. Virol. 78, 3553–3560 (2004). Demonstrates that a poxvirus host-range factor, K1L of vaccinia, can affect the activation of an important antiviral pathway ? that of NF-κB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. DiPerna, G. et al. Poxvirus protein N1L targets the I-κB kinase complex, inhibits signaling to NF-κB and IRF3 signaling by Toll-like receptors. J. Biol. Chem. 279, 36570–36578 (2004). Shows that a poxviral protein, N1L of vaccinia, might target the same host pathway as the host-range factor K1L, indicating that some host pathways are multiply targeted by poxviruses and that it is the summation of these modulations that affects tropism and host range.

    Article  CAS  PubMed  Google Scholar 

  91. Camus-Bouclainville, C. et al. A virulence factor of myxoma virus colocalizes with NF-κB in the nucleus and interferes with inflammation. J. Virol. 78, 2510–2516 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Everett, H. & McFadden, G. Poxviruses and apoptosis: a time to die. Curr. Opin. Microbiol. 5, 395–402 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Shisler, J. L. & Moss, B. Immunology 102 at poxvirus U: avoiding apoptosis. Semin. Immunol. 13, 67–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Barry, M., Wasilenko, S. T., Stewart, T. L. & Taylor, J. M. Apoptosis regulator genes encoded by poxviruses. Prog. Mol. Subcell. Biol. 36, 19–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Everett, H. et al. The myxoma poxvirus protein, M11L, prevents apoptosis by direct interaction with the mitochondrial permeability transition pore. J. Exp. Med. 196, 1127–1139 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wasilenko, S. T., Stewart, T. L., Meyers, A. F. & Barry, M. Vaccinia virus encodes a previously uncharacterized mitochondrial-associated inhibitor of apoptosis. Proc. Natl Acad. Sci. USA 100, 14345–14350 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, G. et al. Myxoma virus M11L prevents apoptosis through constitutive interaction with Bak. J. Virol. 78, 7097–7111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fenner, F. & Sambrook, J. F. Conditional lethal mutants of rabbitpox virus II. Mutants (p) that fail to multiply in PK-2a cells. Virology 28, 600–609 (1966).

    Article  CAS  PubMed  Google Scholar 

  99. Sambrook, J. F., Padgett, B. L. & Tomkins, J. K. N. Conditional lethal mutants of rabbitpox virusI Isolation of host cell-dependent and temperature-dependent mutants. Virology 28, 592–599 (1966).

    Article  CAS  PubMed  Google Scholar 

  100. Gemmell, A. & Fenner, F. Genetic studies with mammalian poxviruses. III. White (u) mutants of rabbitpox virus. Virology 11, 219–235 (1960).

    Article  CAS  PubMed  Google Scholar 

  101. McClain, M. E. The host range and plaque morphology of rabbitpox virus (RPμ+) and its μ mutants on chick fibroblast, PK-2a, and L929 cells. Aust. J. Exp. Biol. Med. Sci. 43, 31–44 (1965).

    Article  CAS  PubMed  Google Scholar 

  102. McClain, M. E. & Greenland, R. H. Recombination between rabbitpox virus mutants in permissive and nonpermissive cells. Virology 25, 516–522 (1965).

    Article  CAS  PubMed  Google Scholar 

  103. Lake, J. R. & Cooper, P. D. Deletions of the terminal sequences in the genome of the white pock (μ) and host restricted (ρ) mutants of rabbitpox virus. J. Gen. Virol. 48, 135–147 (1980).

    Article  CAS  PubMed  Google Scholar 

  104. Moyer, R. W., Brown, G. D. & Graves, R. L. The white pock mutants of rabbit poxvirus. II. The early white pock (mu) host range (hr) mutants of rabbit poxvirus uncouple transcription and translation in nonpermissive cells. Virology 106, 234–249 (1980).

    Article  CAS  PubMed  Google Scholar 

  105. Ali, A. N., Turner, P. C., Brooks, M. A. & Moyer, R. W. The SPI-1 gene of rabbitpox virus determines host range and is required for hemorrhagic pock formation. Virology 202, 305–314 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. Brooks, M. A., Ali, A. N., Turner, P. C. & Moyer, R. W. A rabbitpox virus serpin gene controls host range by inhibiting apoptosis in restrictive cells. J. Virol. 69, 7688–7698 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Shisler, J. L., Isaacs, S. N. & Moss, B. Vaccinia virus serpin-1 deletion mutant exhibits a host range defect charracterized by low levels of intermediate and late mRNAs. Virology 262, 298–311 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Macen, J. L. et al. Differential inhibition of the Fas- and granule-mediated cytolysis pathways by the orthopoxvirus cytokine response modifier A/SPI-2 and SPI-1 protein. Proc. Natl Acad. Sci. USA 93, 9108–9113 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Moon, K. B., Turner, P. C. & Moyer, R. W. SPI-1-dependent host range of rabbitpox virus and complex formation with cathepain G is associated with serpin motifs. J. Virol. 73, 8999–9010 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wallich, R., Simon, M. M. & Mullbacher, A. Virulence of mousepox virus is independent of serpin-mediated control of cellular cytotoxicity. Viral Immunol. 14, 71–81 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Kettle, S., Blake, N. W., Law, K. M. & Smith, G. L. Vaccinia virus serpins B13R (SPI-2) and B22R (SPI-1) encode M(r) 38.5 and 40K, intracellular polypeptides that do not affect virus virulence in a murine intranasal model. Virology 206, 136–147 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Legrand, F. A. et al. Induction of potent humoral and cell-mediated immune responses by attenuated vaccinia virus vectors with deleted serpin genes. J. Virol. 78, 2770–2779 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Perkus, M. E. et al. Vaccinia virus host range genes. Virology 179, 276–286 (1990). A classic paper summarizing the discovery that specific vaccinia host-range genes control the ability of poxviruses to infect mammalian cells of a given host species.

    Article  CAS  PubMed  Google Scholar 

  114. Drillien, Koehren, F. & Kirn, A. Host-range deletion mutant of vaccinia virus defective in human cells. Virology 111, 488–499 (1981).

    Article  CAS  PubMed  Google Scholar 

  115. Drillien, R., Spehner, D. & Kirn, A. Host range restriction of vaccinia virus in Chinese hamster ovary cells: relationship to shutoff of protein synthesis. J. Virol. 28, 843–850 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hruby, D. E., Lynn, D. L., Condit, R. C. & Kates, J. R. Cellular differences in the molecular mechanisms of vaccinia virus host-range restriction. J. Gen. Virol. 47, 485–488 (1980).

    Article  CAS  PubMed  Google Scholar 

  117. Gillard, S., Spehner, D. & Drillien, R. Mapping of a vaccinia host range sequence by insertion into the viral thymidine kinase gene. J. Virol. 53, 316–318 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Gillard, S., Spehner, D., Drillien, R. & Kirn, A. Localization and sequence of a vaccinia virus gene required for multiplication in human cells. Proc. Natl Acad. Sci. USA 83, 5573–5577 (1986).

    Article  CAS  PubMed  Google Scholar 

  119. Ramsey-Ewing, A. & Moss, B. Apoptosis induced by a postbinding step of vaccinia virus entry into Chinese hamster ovary cells. Virology 242, 138–149 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Spehner, D., Gillard, S., Drillien, R. & Kirn, A. A cowpox virus gene required for multiplication in Chinese hamster ovary cells. J. Virol. 62, 1297–1304 (1988). Another classic paper showing that a specific gene, CHOhr (or CP77), is required for the replication of cowpox virus in CHO cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Oguiura, N., Spehner, D. & Drillien, R. Detection of a protein encoded by the vaccinia virus C7L open reading frame and study of its effect on virus multiplication in different cell lines. J. Gen. Virol. 74, 1409–1413 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Chen, W., Drillien, R., Spehner, D. & Buller, R. M. L. Restricted replication of ectromelia virus in cell culture correlates with mutation in virus-encoded host range genes. Virology 187, 433–442 (1992).

    Article  CAS  PubMed  Google Scholar 

  123. Ramsey-Ewing, A. & Moss, B. Restriction of vaccinia virus replication in CHO cells occurs at the stage of viral intermediate protein synthesis. Virology 206, 984–993 (1995).

    Article  CAS  PubMed  Google Scholar 

  124. Ink, B. S., Gilbert, C. S. & Evans, G. I. Delay of vaccinia virus-induced apoptosis in nonpermissive Chinese hamster ovary cells by the cowpox virus CHOhr and adenovirus E1B 19K genes. J. Virol. 69, 661–668 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hsiao, J. -C., Chung, C. -S., Drillien, R. & Chang, W. The cowpox virus host range gene, CP77, affects phosphorylation of eIF2 α and vaccinia viral translation in apoptotic HeLa cells. Virology 329, 199–212 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Ramsey-Ewing, A. L. & Moss, B. Complementation of a vaccinia virus host-range K1L gene deletion by the nonhomologous CP77 gene. Virology 222, 75–86 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Chung, C. -S., Vasilevskaya, I. A., Wang, S. -C., Bair, C. -H. & Chang, W. Apoptosis and host restriction of vaccinia virus in RK13 cells. Virus Res. 52, 121–132 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Sutter, G., Ramseyewing, A., Rosales, R. & Moss, B. Stable expression of the vaccinia virus K1L gene in rabbit cells complements the host range defect of a vaccinia virus mutant. J. Virol. 68, 4109–4116 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Mosavi, L. K., Cammett, T. J., Desrosiers, D. C. & Peng, Z. -Y. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 13, 1435–1448 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tartaglia, J. et al. NYVAC: a highly attenuated strain of vaccinia virus. Virology 188, 217–232 (1992).

    Article  CAS  PubMed  Google Scholar 

  131. Meyer, H., Sutter, G. & Mayr, A. Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. J. Gen. Virol. 72, 1031–1038 (1991).

    Article  CAS  PubMed  Google Scholar 

  132. Carroll, M. W. & Moss, B. Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus- propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 238, 198–211 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Drexler, I., Heller, K., Wahren, B., Erfle, V. & Sutter, G. Highly attenuated modified vaccinia virus Ankara replicates in baby hamster kidney cells, a potential host for virus propagation, but not in various human transformed and primary cells. J. Gen. Virol. 79, 347–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Blanchard, T. J., Alcami, A., Andrea, P. & Smith, G. L. Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins- implications for use as a human vaccine. J. Gen. Virol. 79, 1159–1167 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Wyatt, L. S. et al. Marker rescue of the host range restriction defects of modified vaccinia virus ankara. Virology 251, 334–342 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Mossman, K., Lee, S. F., Barry, M., Boshkov, L. & McFadden, G. Disruption of M-T5, a novel myxoma virus gene member of the poxvirus host range superfamily, results in dramatic attenuation of myxomatosis in infected European rabbits. J. Virol. 70, 4394–4410 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Langland, J. O. & Jacobs, B. L. The role of the PKR-inhibitory genes, E3L and K3L, in determining vaccinia virus host range. Virology 299, 133–141 (2002). An important paper showing how two closely related vaccinia host-range genes, E3L and K3L, differ in the mechanisms by which they mediate vaccinia tropism in a variety of mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  138. Smith, E. J., Marié, I., Prakash, A., García-Sastre, A. & Levy, D. E. IRF3 and IRF7 phosphorylation in virus-infected cells does not require double-stranded RNA-dependent protein kinase R or IκB kinase but is blocked by vaccinia virus E3L protein. J. Biol. Chem. 276, 8951–8957 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Beattie, E. et al. Host-range restriction of vaccinia virus E3L-specific deletion mutants. Virus Genes 12, 89–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. Beattie, E., Paoletti, E. & Tartaglia, J. Distinct patterns of IFN sensitivity observed in cells infected with vaccinia K3L- and E3L-mutant viruses. Virology 210, 254–263 (1995).

    Article  CAS  PubMed  Google Scholar 

  141. Fang, Z. -Y. et al. Expression of vaccinia E3L and K3L genes by a novel recombinant canarypox HIV vaccine vector enhances HIV-1 pseudovirion production and inhibits apoptosis in human cells. Virology 291, 272–284 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Hornemann, S. et al. Replication of modified vaccinia virus Ankara in primary chicken embryo fibroblasts requires expression of the interferon resistance gene E3L. J. Virol. 77, 8394–8407 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Senkevich, T. G., Koonin, E. V. & Buller, R. M. A poxvirus protein with a RING zinc finger motif is of crucial importance for virulence. Virology 198, 118–128 (1994).

    Article  CAS  PubMed  Google Scholar 

  144. Senkevich, T. G., Wolffe, E. J. & Buller, R. M. L. Ectromelia virus RING finger protein is localized in virus factories and is required for virus replication in macrophages. J. Virol. 69, 4103–4111 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Huang, J. et al. The poxvirus p28 virulence factor is an E3 ubiquitin ligase. J. Biol. Chem. 279, 54110–54116 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Nerenberg, B. T. H. et al. The poxviral RING protein p28 is a ubiquitin ligase that targets ubiquitin to viral replication factories. J. Virol. 79, 597–601 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Fenner, F. & Ross, J. Myxomatosis (eds Thompson, G. V. & King, C. M.) (Oxford Univ. Press, 1994).

    Google Scholar 

  148. Rubins, K. H. et al. The host response to smallpox: analysis of the gene expression program in peripheral blood cells in a non-human primate model. Proc. Natl Acad. Sci. USA 101, 15190–15195 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Jahrling, P. B. et al. Exploring the potential of variola virus infecton of cynomolgus macaques as a model for human smallpox. Proc. Natl Acad. Sci. USA 101, 15196–15200 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Bieniasz, P. D. Intrinsic immunity: a front-line defense against viral attack. Nature Immunol. 5, 1109–1115 (2004). This excellent review describes several host molecules that mediate the intrinsic antiviral responses of mammalian cells at the cellular level. Several of these host responses might well affect multiple virus groups.

    Article  CAS  Google Scholar 

  151. Buller, R. M. & Fenner, F. in The Mouse in Biomedical Research (eds Fox, J. G. et al.) (American College of Laboratory Animal Medicine, in the press).

  152. Mahalingam, S., Foster, P. S., Lobigs, M., Farber, J. M. & Karupiah, G. Interferon-inducible chemokines and immunity to poxvirus infections. Immunol. Rev. 177, 127–133 (2000).

    Article  CAS  PubMed  Google Scholar 

  153. Smith, V. P. & Alcami, A. Inhibition of interferons by ectromelia virus. J. Virol. 76, 1124–1134 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mullbacher, A. Cell-mediated cytotoxicity in recovery from poxvirus infections. Rev. Med. Virol. 13, 223–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Brownstein, D. G., Bhatt, P. N., Gras, L. & Jacoby, R. O. Chromosomal locations and gonadal dependence of genes that mediate resistance to ectromelia (mousepox) virus-induced mortality. J. Virol. 65, 1946–1951 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. O'Neill, H. C. Resistance to ectromelia virus infection in mice. Analysis of H-2-linked gene effects. Arch. Virol. 118, 253–259 (1991).

    Article  CAS  PubMed  Google Scholar 

  157. Brownstein, D. G., Bhatt, P. N. & Gras, L. Ectromelia virus replication in major target organs of innately resistant and susceptible mice after intravenous infection. Arch. Virol. 129, 65–75 (1993).

    Article  CAS  PubMed  Google Scholar 

  158. Delano, M. L. & Brownstein, D. G. Innate resistance to lethal mousepox is genetically linked to the NK gene complex on chromosome 6 and correlates with early restriction of virus replication by cells with an NK phenotype. J. Virol. 69, 5875–5877 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Brownstein, D. G. & Gras, L. Chromosome mapping of Rmp-4, a gonad-dependent gene encoding host resistance to mousepox. J. Virol. 69, 6958–6964 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Brownstein, D. G. & Gras, L. Differential pathogenesis of lethal mousepox in congenic Dba/2 mice implicates natural killer cell receptor NKR-P1 in necrotizing hepatitis and the fifth component of complement in recruitment of circulating leukocytes to spleen. Am. J. Pathol. 150, 1407–1420 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Karupiah, G., Chen, J. H., Nathan, C. F., Mahalingam, S. & Macmicking, J. D. Identification of nitric oxide synthase 2 as an innate resistance locus against ectromelia virus infection. J. Virol. 72, 7703–7706 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Mahalingam, S. et al. Enhanced resistance in STAT6-deficient mice to infection with ectromelia virus. Proc. Natl Acad. Sci. USA 98, 6812–6817 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Xu, D. et al. The multidrug resistance gene mdr1a influences resistance to ectromelia virus infection by mechanisms other than conventional immunity. Immunol. Cell Biol. 82, 462–470 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Chaudhri, G. et al. Polarized type 1 cytokine response and cell-mediated immunity determine genetic resistance to mousepox. Proc. Natl Acad. Sci. USA 101, 9057–9062 (2004). Provides a useful up-to-date summation of what is known about the importance of T H -polarized responses in determining whether a given poxvirus infection will cause pathology or resolve.

    Article  CAS  PubMed  Google Scholar 

  165. Buller, R. L. M. & Palumbo, G. J. Poxvirus pathogenesis. Microbiol. Rev. 55, 80–122 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Mullbacher, A. & Lobigs, M. Creation of killer poxvirus could have been predicted. J. Virol. 75, 8353–8355 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Karupiah, G. Type 1 and type 2 cytokines in antiviral defense. Vet. Immunol. Immunopathol. 63, 105–109 (1998).

    Article  CAS  PubMed  Google Scholar 

  168. Jackson, R. J. et al. Expression of mouse interleukin-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J. Virol. 75, 1205–1210 (2001). This controversial paper provides data showing that the insertion of a T H 2-polarizing cytokine, IL-4, into ectromelia virus resulted in a poxvirus construct that was pathogenic in mice strains that are normally resistant to ectromelia infection, and that the ability to vaccinate against the IL-4-expressing virus was compromised.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Guo, Z. S. & Bartlett, D. L. Vaccinia as a vector for gene delivery. Expert Opin. Biol. Ther. 4, 902–917 (2004).

    Article  Google Scholar 

  170. Pastoret, P. -P. & Vanderplasschen, A. Poxviruses as vaccine vectors. Comp. Immunol. Microbiol. Infect. Dis. 26, 343–355 (2003).

    Article  PubMed  Google Scholar 

  171. Essajee, S. & Kaufman, H. L. Poxvirus vaccines for cancer and HIV therapy. Expert Opin. Biol. Ther. 4, 1–14 (2004).

    Article  Google Scholar 

  172. Franchini, G., Gurunathan, S., Baglyos, L., Plotkin, S. & Tartaglia, J. Poxvirus-based vaccine candidates for HIV: two decades of experience with special emphasis on canarypox vectors. Expert Rev. Vaccines 3, S75–S88 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Bonilla-Guerrero, R. & Poland, G. A. Smallpox vaccines: current and future. J. Lab. Clin. Med. 142, 252–257 (2003).

    Article  PubMed  Google Scholar 

  174. Upfal, M. J. & Cinti, S. Smallpox vaccination and adverse cardiac events. Emerg. Infect. Dis. 10, 961–962 (2004).

    Article  PubMed  Google Scholar 

  175. Hodge, J. W. et al. Modified vaccinia virus Ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses. Cancer Res. 63, 7942–7949 (2003).

    CAS  PubMed  Google Scholar 

  176. Earl, P. L. et al. Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 428, 182–185 (2004). Showed that the non-replicating MVA strain could still provide robust protection against lethal challenge of monkeypox in the primate model. This indicates that MVA might also protect humans from smallpox, therefore providing a safer platform for other vaccine strategies.

    Article  CAS  PubMed  Google Scholar 

  177. Belyakov, I. M. et al. Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc. Natl Acad. Sci. USA 100, 9458–9463 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Hel, Z. et al. Equivalent immunogenicity of the highly attenuated poxvirus-based ALVAC-SIV and NYVAC-SIV vaccine candidates in SIVmac251-infected macaques. Virology 304, 125–134 (2002).

    Article  CAS  PubMed  Google Scholar 

  179. Wyatt, L. S., Earl, P. L., Eller, L. A. & Moss, B. Highly attenuated smallpox vaccine protects mice with and without immune deficiencies against pathogenic vaccinia virus challenge. Proc. Natl Acad. Sci. USA 101, 4590–4595 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Paoletti, E., Taylor, J., Meignier, B., Meric, C. & Tartaglia, J. Highly attenuated poxvirus vectors: NYVAC, ALVAC and TROVAC. Dev. Biol. Stand. 84, 159–163 (1995).

    CAS  PubMed  Google Scholar 

  181. Sutter, G. & Staib, C. Vaccina vectors as candidate vaccines: the development of modified vaccinia virus Ankara for antigen delivery. Curr. Drug Targets Infect. Disord. 3, 263–271 (2003).

    Article  CAS  PubMed  Google Scholar 

  182. McCurdy, L. H., Larkin, B. D., Martin, J. E. & Graham, B. S. Modified vaccinia Ankara: potential as an alternative smallpox vaccine. Clin. Infect. Dis. 38, 1748–1753 (2004).

    Article  Google Scholar 

  183. Antoine, G., Scheiflinger, F., Dorner, F. & Falkner, F. G. The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244, 365–395 (1998).

    Article  CAS  PubMed  Google Scholar 

  184. Sancho, M. C., Schleich, S., Griffiths, G. & Krijnse-Locker, J. The block in assembly of modified vaccinia virus Ankara in HeLa cells reveals new insights into vaccinia virus morphogenesis. J. Virol. 76, 8318–8334 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Gallego-Gómez, J. C. et al. Differences in virus-induced cell morphology and in virus maturation between MVA and other strains (WR, Ankara, and NYCBH) of vaccinia virus in infected human cells. J. Virol. 77, 10606–10622 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Staib, C. et al. Transient host range selection for genetic engineering of modified vaccinia virus Ankara. Biotechniques 28, 1137–1147 (2000).

    Article  CAS  PubMed  Google Scholar 

  187. Tscharke, D. C. & Smith, G. L. Notes on transient host range selection for engineering vaccinia virus strain MVA. Biotechniques 33, 186–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  188. Staib, C., Löwel, M., Erfle, V. & Sutter, G. Improved host range selection for recombinant modified vaccinia virus Ankara. Biotechniques 34, 694–700 (2003).

    Article  CAS  PubMed  Google Scholar 

  189. Mastrangelo, M. J. & Lattime, E. C. Virotherapy clinical trials for regional disease: in situ immune modulation using recombinant poxvirus vectors. Cancer Gene Ther. 9, 1013–1021 (2002).

    Article  CAS  PubMed  Google Scholar 

  190. Bell, J. C., Garson, K. A., Lichty, B. D. & Stojdi, D. F. Oncolytic viruses: programmable tumour hunters. Curr. Gene Ther. 2, 1–12 (2002).

    Article  Google Scholar 

  191. Chiocca, E. A. Oncolytic viruses. Nature Rev. Cancer 2, 938–961 (2002).

    Article  CAS  Google Scholar 

  192. Lin, E. & Nemunaitis, J. Oncolytic viral therapies. Cancer Gene Ther. 11, 643–664 (2004).

    Article  CAS  PubMed  Google Scholar 

  193. Zeh, H. J. & Bartlett, D. L. Development of a replication-selective, oncolytic poxvirus for the treatment of human cancers. Cancer Gene Ther. 9, 1001–1012 (2002).

    Article  CAS  PubMed  Google Scholar 

  194. Thorne, S. H. & Kirn, D. H. Future directions for the field of oncolytic virotherapy: a perspective on the use of vaccinia virus. Expert Opin. Biol. Ther. 4, 1–15 (2004). Provides a useful perspective on the exploitation of vaccinia virus-based vectors for cancer therapy.

    Article  Google Scholar 

  195. Yu, Y. A. et al. Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nature Biotechnol. 22, 313–320 (2004).

    Article  CAS  Google Scholar 

  196. McCart, J. A. et al. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res. 61, 8751–8757 (2001).

    CAS  PubMed  Google Scholar 

  197. McCart, J. A. et al. Oncolytic vaccinia virus expressing the human somatostatin receptor SSTR2: molecular imaging after systemic delivery using 111In-pentetreotide. Mol. Ther. 10, 553–561 (2004).

    Article  CAS  PubMed  Google Scholar 

  198. Galmiche, M. C., Rindisbacher, L., Wels, W., Wittek, R. & Buchegger, F. Expression of a functional single chain antibody on the surface of extracellular enveloped vaccinia virus as a step towards selective tumour cell targeting. J. Gen. Virol. 78, 3019–3027 (1997).

    Article  CAS  PubMed  Google Scholar 

  199. Fenner, F. in The Mouse in Biomedical Research Vol. II (eds H. L. Fox, J. D. Small and J. G. Fox) 213 (Academic Press, 1982).

    Google Scholar 

  200. Vilcek, J. Why are rabbits uniquely sensitive to myxoma virus? Cherchez l'interferon! Nature Immunol. 5, 1205–1206 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author holds a Canada Research Chair in Molecular Virology, and is supported by operating grants from the Canadian Institutes of Health Research and the NCIC of Canada. The help of D. Hall in preparing the manuscript and the critical feedback from M. Stanford and M. Barry are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

I am co-founder of a biotechnology company (VIRON Therapeutics) which is developing anti-inflammatory proteins derived from viruses. However, the corporate agenda for this company is unrelated to this particular review.

Related links

Related links

DATABASES

Entrez

Cowpox virus

Ectromelia virus

molluscum contagiosum virus

myxoma virus

vaccinia virus

variola virus

Infectious Disease Information

Monkeypox

SARS

smallpox

SwissProt

Nck

N-WASP

SPI-1

WIP

FURTHER INFORMATION

Poxvirus Bioinformatics Resouce Center

WHO smallpox slide set

Grant McFadden's laboratory

Glossary

ZOONOSIS

The infection of a novel host species, usually humans, by an animal virus that normally does not use man as a reservoir host.

PERMISSIVE HOST

A host species that manifests overt disease when exposed to a specific virus.

RESTRICTIVE CELLS

Cells that do not allow completion of the virus life cycle when exposed to a specific virus.

GLYCOSAMINOGLYCANS

A group of polysaccharides with repeating disaccharide units that are linked to proteoglycans located at the surface of most mammalian cells.

TOLL-LIKE RECEPTORS

(TLRs). Surface receptors that are pattern-recognition sentinels for recognizing pathogen infection and inducing innate antimicrobial responses.

ACTIN-TAIL POLYMERIZATION

A motility mechanism that assists the extrusion of certain pathogens, such as poxviruses, to facilitate infection of neighbouring cells.

MITOGENIC STIMULATION

The process by which many poxviruses express growth factor homologues that can trigger neighbouring cells from quiescence into an inappropriate S-phase that increases virus replication levels.

DENDRITIC CELLS

Cells of the immune system with characteristic tree-like projections. They participate in the recognition of pathogens and initiate the early phases of the host antiviral responses.

MOLECULAR CHAPERONE

Host proteins that assist in the folding or trafficking of host (and possibly viral) proteins.

SERPIN

Serine proteinase inhibitor, designed to bind and inhibit specific target proteinases. Poxviruses are the only viruses to express active members of this superfamily.

CATHEPSIN G

A host serine proteinase that can form inhibitory complexes with the poxviral SPI-1 serpin.

TH1 IMMUNE RESPONSE

A host response to a pathogen that is skewed to the preferential activation of cell-mediated pathways, especially cytotoxic T-cells. By contrast, TH2 immune responses are skewed towards the activation of humoral patyhways, especially antibodies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McFadden, G. Poxvirus tropism. Nat Rev Microbiol 3, 201–213 (2005). https://doi.org/10.1038/nrmicro1099

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro1099

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing