Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cell entry machines: a common theme in nature?

Abstract

Molecular machines orchestrate the translocation and entry of pathogens through host cell membranes, in addition to the uptake and release of molecules during endocytosis and exocytosis. Viral cell entry requires a family of glycoproteins, and the structural organization and function of these viral glycoproteins are similar to the SNARE proteins, which are known to be involved in intracellular vesicle fusion, endocytosis and exocytosis. Here, we propose that a family of bacterial membrane proteins that are responsible for cell-mediated adherence and entry resembles the structural architecture of both viral fusion proteins and eukaryotic SNAREs and might therefore share similar, but distinct, mechanisms of cell membrane translocation. Furthermore, we propose that the recurrence of these molecular machines across species indicates that these architectural motifs were evolutionarily selected because they provided the best solution to ensure the survival of pathogens within a particular environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of intracellular vesicle exocytosis, and viral and bacterial cell entry.
Figure 2: Architecture of eukaryotic membrane and viral fusion proteins compared with bacterial invasins.
Figure 3: Intracellular signalling events.

Similar content being viewed by others

References

  1. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2. 4Å resolution. Nature 395, 347–353 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Antonin, W., Fasshauer, D., Becker, S., Jahn, R. & Schneider, T. R. Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nature Struct. Biol. 9, 107–111 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, Y. A. & Scheller, R. H. Snare-mediated membrane fusion. Nature Rev. Mol. Cell Biol. 2, 98–106 (2001).

    Article  CAS  Google Scholar 

  4. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Dormitzer, P. R., Nason, E. B., Prasad, B. V. & Harrison, S. C. Structural rearrangements in the membrane penetration protein of a non-enveloped virus. Nature 430, 1053–1058 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Isberg, R. R. & Leong, J. M. Multiple β1 chain integrins are receptors for invasin, a protein that promotes bacteria penetration into mammalian cells. Cell 60, 861–871 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Van Nhieu, G. T., Krukonis, E. S., Reszka, A. A., Horwitz, A. F. & Isberg, R. R. Mutations in the cytoplasmic domain of the integrin β1 chain indicate a role for endocytosis factors in bacterial internalization. J. Biol. Chem. 271, 7665–7672 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Bruce-Staskal, P. J., Weidow, C. L., Gibson, J. J. & Bouton, A. H. Cas, Fak and Pyk2 function in diverse signaling cascades to promote Yersinia uptake. J. Cell Sci. 115, 2689–2700 (2002).

    CAS  PubMed  Google Scholar 

  9. Weidow, C. L., Black, D. S., Bliska, J. B. & Bouton, A. H. CAS/Crk signaling mediates uptake of Yersinia into human epithelial cells. Cell. Microbiol. 2, 549–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Boyle, E. C. & Finlay, B. B. Bacterial pathogenesis: exploiting cellular adherence. Curr. Opin. Cell Biol. 15, 633–639 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Schiavo, G. et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359, 832–835 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Jahn, R., Lang, T. & Sudhof, T. C. Membrane fusion. Cell 112, 519–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Hu, C. et al. Fusion of cells by flipped SNAREs. Science 300, 1745–1749 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Harbury, P. A. B. Springs and zippers: coiled coils in SNARE-mediated membrane fusion. Curr. Biol. 6, 1487–1491 (1998).

    CAS  Google Scholar 

  16. Wang, Y., Sugita, S. & Sudhof, T. C. The RIM/NIM familyof neuronal C2 domain proteins. Interactions with Rab3 and a newclass of Src homology 3 domain proteins. J. Biol. Chem. 275, 20033–20044 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Hernandez, L. D., Hoffman, L. R., Wolfsberg, T. G. & White, J. M. Virus–cell and cell–cell fusion. Ann. Rev. Cell. Dev. Biol. 12, 627–661 (1996).

    Article  CAS  Google Scholar 

  18. Adam, B., Lins, L., Stroobant, V., Thomas, A. & Brasseur, R. Distribution of hydrophobic residues is crucial for the fusogenic properties of the Ebola virus GP2 fusion peptide. J. Virol. 78, 2131–2136 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Epand, R. M. Fusion peptides and the mechanism of viral fusion. Biochim. Biophys. Acta 1614, 116–121 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Lau, W. L., Ege, D. S., Lear, J. D., Hammer, D. A. & DeGrado, W. F. Oligomerization of fusogenic peptides promotes membrane fusion by enhancing membrane destabilization. Biophys. J. 86, 272–284 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Skehel, J. J. & Wiley, D. C. Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95, 871–874 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Dimitrov, D. S. Virus entry: molecular mechanisms and biochemical applications. Nature Rev. Microbiol. 2, 109–122 (2004).

    Article  CAS  Google Scholar 

  23. Poranen, M. M., Daugelavicius, R. & Bamford, D. H. Common principles in viral entry. Annu. Rev. Microbiol. 56, 521–538 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Earp, L. J., Delos, S. E., Park, H. E. & White, J. M. The many mechanisms of viral membrane fusion proteins. Curr. Top. Microbiol. Immunol. 285, 25–66 (2004).

    Google Scholar 

  25. Colman, P. M. & Lawrence, M. C. The structural biology of type I viral membrane fusion. Nature Rev. Mol. Cell Biol. 4, 309–319 (2003).

    Article  CAS  Google Scholar 

  26. Wilson, I. A., Skehel, J. J. & Wiley, D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3Å resolution. Nature 289, 366–373 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. Carr, C. M. & Kim, P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73, 823–832 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Pelkmans, L. & Helenius, A. Insider information: what viruses tell us about endocytosis. Curr. Opin. Cell Biol. 15, 414–422 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Carr, C. M., Chaudhry, C. & Kim, P. S. Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc. Natl Acad. Sci. USA 94, 14306–14313 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marti, D. N., Bjelic, S., Lu, M., Bosshard, H. R. & Jelesarov, I. Fast folding of the HIV-1 and SIV gp41 six-helix bundles. J. Mol. Biol. 336, 1–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Malashkevich, V. N., Singh, M. & Kim, P. S. The trimer-of-hairpins motif in membrane fusion: Visna virus. Proc. Natl Acad. Sci. USA 98, 8502–8506 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tripet, B., et al. Structural characterization of the SARS coronavirus spike S fusion protein core. J. Biol. Chem. 279, 20836–20849 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Bosch, B. J., van der Zee, R., de Haan, C. A. & Rottier, P. J. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 77, 8801–8811 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sackett, K. & Shai, Y. How structure correlates to function for membrane associated HIV-1 gp41 constructs corresponding to the N-terminal half of the ectodomain. J. Mol. Biol. 333, 47–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Sackett, K. & Shai, Y. The HIV-1 gp41 N-terminal heptad repeat plays an essential role in membrane fusion. Biochem. 41, 4678–4685 (2002).

    Article  CAS  Google Scholar 

  36. Liu, J., Wang, S., Hoxie, J. A., LaBranche, C. C. & Lu, M. Mutations that destabilize the gp41 core are determinants for stabilizing the simian immunodeficiency virus–CPmac envelope glycoprotein complex. J. Biol. Chem. 277, 12891–12900 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Matthews, T. et al. Enfuvirtide: the first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nature Rev. Drug. Discov. 3, 215–225 (2004).

    Article  CAS  Google Scholar 

  38. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. Structure of the Dengue virus envelope protein after membrane fusion. Nature 427, 313–319 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2Å resolution. Nature 375, 291–298 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Gibbons, D. L. et al. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 427, 320–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Hogle, J. M. Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu. Rev. Microbiol. 56, 677–702 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shaw, A. L. et al. Three-dimensional visualization of the rotavirus hemagglutinin structure. Cell 74, 693–701 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yeager, M., Berriman, J. A., Baker, T. S. & Bellamy, A. R. Three-dimensional structure of the rotavirus haemagglutinin VP4 by cryo-electron microscopy and difference map analysis. EMBO J. 13, 1011–1018 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bamford, D. H., Romantschuk, M. & Somerharju, P. J. Membrane fusion in prokaryotes: bacteriophage φ6 membrane fuses with the Pseudomonas syringae outer membrane. EMBO J. 6, 1467–1473 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Romantschuk, M., Olkkonen, V. M. & Bamford, D. H. The nucleocapsid of bacteriophage φ6 penetrates the host cytoplasmic membrane. EMBO J. 7, 1821–1829 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu, L., Benson, S. D., Butcher, S. J., Bamford, D. H. & Burnett, R. M. The receptor binding protein P2 of PRD1, a virus targeting antibiotic-resistant bacteria, has a novel fold suggesting multiple functions. Structure 11, 309–322 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Grahn, A. M., Daugelavicius, R. & Bamford, D. H. Sequential model of phage PRD1 DNA delivery: active involvement of the viral membrane. Mol. Microbiol. 46, 1199–1209 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Finlay, B. B., Ruschkowski, S. & Dedhar, S. Cytoskeletal rearrangements accompanying salmonella entry into epithelial cells. J. Cell Sci. 99, 283–296 (1991).

    PubMed  Google Scholar 

  49. Small, P. L., Isberg, R. R. & Falkow, S. Comparison of the ability of enteroinvasive Escherichia coli, Salmonella typhimurium, Yersinia pseudotuberculosis, and Yersinia enterocolitica to enter and replicate within HEp-2 cells. Infect. Immun. 55, 1674–1679 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dombek, P. E. et al. High-frequency intracellular invasion of epithelial cells by serotype M1 group A streptococci: M1 protein-mediated invasion and cytoskeletal rearrangements. Mol. Microbiol. 31, 859–870 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. McGee, Z. A., Stephens, D. S., Hoffman, L. H., Schlech, W. F 3rd & Horn, R. G. Mechanisms of mucosal invasion by pathogenic Neisseria. Rev. Infect. Dis. 4, S708–S714 (1983).

    Article  Google Scholar 

  52. Sansonetti, P. J., Ryter, A., Clerc, P., Maurelli, A. T. & Mounier, J. Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis. Infect. Immun. 51, 461–469 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gedde, M. M., Higgins, D. E., Tilney, L. G. & Portnoy, D. A. Role of listeriolysin O in cell-to-cell spread of Listeria monocytogenes. Infect. Immun. 68, 999–1003 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Isberg, R. I., Voorhis, D. L. & Falkow, S. Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells. Cell 50, 769–778 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Bliska, J. B., Copass, M. C. & Falkow, S. The Yersinia pseudotuberculosis adhesin YadA mediates intimate bacterial attachment to and entry into HEp-2 cells. Infect. Immun. 61, 3914–3921 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Van Nhieu, G. T., Krukonis, E. S., Reszka, A. A., Horwitz, A. F. & Isberg, R. R. Mutations in the cytoplasmic domain of the integrin β1 chain indicate a role for endocytosis factors in bacterial internalization. J. Biol. Chem. 271, 7665–7672 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Yang, Y. & Isberg, R. R. Cellular internalization in the absence of invasin expression is promoted by the Yersinia pseudotuberculosis yadA product. Infect. Immun. 61, 3907–3913 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Comanducci, M. et al. NadA, a novel vaccine candidate of Neisseria meningitidis. J. Exp. Med. 195, 1445–1454 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Capecchi, B. et al. Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells. Mol. Microbiol. 55, 687–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Hoiczyk, E., Roggenkamp, A., Reichenbecher, M., Lupas, A. & Heesemann, J. Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins. EMBO J. 19, 5989–5999 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, P. et al. A family of variably expressed outer-membrane proteins (Vomp) mediates adhesion and autoaggregation in Bartonella quintana. Proc. Natl Acad. Sci. USA 101, 13630–13635 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sandt, C. H. & Hill, C. W. Four different genes responsible for nonimmune immunoglobulin-binding activities within a single strain of Escherichia coli. Infect. Immun. 68, 2205–2214 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roggenkamp, A. et al. Molecular analysis of transport and oligomerization of the Yersinia enterocolitica adhesin YadA. J. Bacteriol. 185, 3735–3744 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nummelin, H. et al. The Yersinia adhesin YadA collagen-binding domain sructure is a novel left-handed parallel β-roll. EMBO J. 23, 701–711 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Soding, J. & Lupas, A. N. More than the sum of their parts: on the evolution of proteins from peptides. BioEssays 25, 837–846 (2003).

    Article  PubMed  CAS  Google Scholar 

  66. Bliska, J. B., Copass, M. C. & Falkow, S. The Yersinia pseudotuberculosis adhesin YadA mediates intimate bacterial attachment to and entry into HEp-2 cells. Infect. Immun. 61, 3914–3921 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Isberg, R. R. & Leong, J. M. Multiple β1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60, 861–871 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. El Tahir, Y. E., Kuusela, P. & Skurnik, M. Functional mapping of the Yersinia enterocolitica adhesin YadA. Identification of eight NSVAIG-S motifs in the amino-terminal half of the protein involved in collagen binding. Mol. Microbiol. 37, 192–206 (2000).

    Article  CAS  Google Scholar 

  69. Schulze-Koops, H. et al. Outer membrane protein YadA of enteropathogenic yersiniae mediates specific binding to cellular but not plasma fibronectin. Infect. Immun. 61, 2513–2519 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Flugel, A. et al. Interaction of enteropathogenic Yersinia enterocolitica with complex basement membranes and the extracellular matrix proteins collagen type IV, laminin-1 and-2, and nidogen/entactin. J. Biol. Chem. 269, 29732–29738 (1994).

    CAS  PubMed  Google Scholar 

  71. Rosqvist, R., Skurnik, M. & Wolf-Watz, H. Increased virulence of Yersinia pseudotuberculosis by two independent mutations. Nature 334, 522–525 (1988).

    Article  CAS  PubMed  Google Scholar 

  72. Eitel, J. & Dersch, P. The YadA protein of Yersinia pseudotuberculosis mediates high-efficiency uptake into human cells under environmental conditions in which invasin is repressed. Infect. Immun. 70, 4880–4891 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. House-Pompeo, K., Xu, Y., Joh, D., Speziale, P. & Hook, M. Conformational changes in the fibronectin binding MSCRAMMs are induced by ligand binding. J. Biol. Chem. 271, 1379–1384 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Schwarz-Linek, U., Höök, M. & Potts, J. R. The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol. Microbiol. 52, 631–641 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Frick, I. G., Schmidtchen, A. & Sjöbring, U. Interactions between M proteins of Streptococcus pyogenes and glycosaminoglycans promote bacterial adhesion to host cells. Eur. J. Biochem. 270, 2303–2311 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Meehan, M., Kelly, S. M., Price, N. C. & Owen, P. The C-terminal portion of the fibrinogen-binding protein of Streptococcus equi subsp. equi contains extensive-helical coiled-coil structure and contributes to thermal stability. FEMS Microbiol. Lett. 206, 81–86 (2002).

    CAS  PubMed  Google Scholar 

  77. Meehan, M., Nowlan, P. & Owen, P. Affinity purification and characterization of a fibrinogen-binding protein complex which protects mice against lethal challenge with Streptococcus equi subsp. equi. Microbiol. 144, 993–1003 (1998).

    Article  CAS  Google Scholar 

  78. Rosenow, C. et al. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol. 25, 819–829 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Sinha, B. et al. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1. Cell. Microbiol. 2, 101–117 (1999).

    Article  Google Scholar 

  80. Rozelle, A. L. et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP–Arp2/3. Curr. Biol. 10, 311–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Tebar, F., Sorkina, T., Sorkin, A., Ericsson, M. & Kirchhausen, T. Esp15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits. J. Biol. Chem. 271, 28727–28730 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Marsh, M. & McMahon, H. T. The structural era of endocytosis. Science 285, 215–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Sieczkarski, S. B. & Whittaker, G. R. Dissecting virus entry via endocytosis. J. Gen. Virol. 83, 1535–1545 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Roy, A. M. M., Parker, J. S., Parrish, C. R. & Whittaker, G. R. Early stages of influenza virus entry into Mv-1 lung cells: involvement of dynamin. Virology 267, 17–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Greber, U. F. Signalling in viral entry. Cell. Mol. Life Sci. 59, 608–626 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Ludwig, S., Planz, O., Pleschka, S. & Wolff, T. Influenza-virus-induced signaling cascades: targets for antiviral therapy. Trends Mol. Med. 9, 46–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Cudmore, S., Reckmann, I. & Way, M. Viral manipulations of the actin cytoskeleton. Trends Microbiol. 5, 142–148 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Davis, C. B. et al. Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J. Exp. Med. 186, 1793–1798 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, E., Stupack, D., Bokoch, G. M. & Nemerow, G. R. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J. Virol. 72, 8806–8812 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Alrutz, M. A. & Isberg, R. R. Involvement of focal adhesion kinase in invasin-mediated uptake. Proc. Natl Acad. Sci. USA. 95, 13658–13663 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Isberg, R. R., Hamburger, Z. & Dersch, P. Signaling and invasin-promoted uptake via integrin receptors. Microbes Infect. 2, 793–801 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. El Tahir, Y. & Skurnik, M. YadA, the multifaceted Yersinia adhesin. Int. J. Med. Microbiol. 291, 209–218 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Schlaepfer, D. D., Broome, M. A. & Hunter, T. Fibronectin-stimulated signaling from a focal adhesion kinase-c-Src complex: involvement of the Grb2, p130cas, and Nck adaptor proteins. Mol. Cell. Biol. 17, 1702–1713 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sieg, D. J. et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nature Cell Biol. 2, 249–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Delevoye, C., Nilges, M., Dautry-Varsat, A. & Subtil, A. Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: oligomerization of IncA mediates interaction between facing membranes. J. Biol. Chem. 279, 46896–46906 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98, 825–833 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Benson, S. D., Bamford, J. K., Bamford, D. H. & Burnett, R. M. Does common architecture reveal a viral lineage spanning all three domains of life? Mol. Cell 16, 673–685 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Skehel, J. J. & Wiley, D. C. Influenza haemagglutinin. Vaccine 20, S51–S54 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. Savino, B. Capecchi, J. Adu-Bobie, M. Pizza and B. Aricò for sharing unpublished data on the NadA protein, crucial to support our hypotheses. They are also grateful to M. Scarselli for help in structural model reconstruction of the discussed proteins, and to K. Stadler and I. Ferlenghi for useful discussion and advice. A special acknowledgment goes to G. Corsi for artwork and to C. Mallia for assistance in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rino Rappuoli.

Ethics declarations

Competing interests

The authors are employed by Chiron Vaccines

Related links

Related links

DATABASES

Swiss-Prot

Cdc42

InvA

NadA

UspA1

UspA2

VAMP1

WASP

YadA

FURTHER INFORMATION

PDB protein databank

Glossary

CIRCULAR DICHROISM SPECTRUM ANALYSIS

A widely used technique for obtaining information about protein structure and conformation. It is a sensitive and reliable tool to study the structure and stability of proteins.

COILED COIL

An important protein–protein interaction motif often used to control oligomerization, characterized by a conserved heptad repeat. Coiled coils consist of helices that wrap around one another with a superhelical twist.

FUSION PEPTIDE

A sequence of 20–30 mainly hydrophobic residues (Ala and Gly) found at the N-terminus of the stalk exposed after a conformational change of the viral fusion protein. Insertion of the peptide into the host cell membrane leads to cell fusion events.

HEPTAD REPEAT

Seven residue patterns denoted (abcdefg)n in which the a and d residues (core positions) are generally hydrophobic. As there are 3.6 residues to each turn of the α-helix, these a and d residues form a hydrophobic seam, which, as each heptad is slightly under two turns, slowly twists around a helix. Heptad repeats are characteristic of certain proteins such as the intermediate filament proteins.

INVASIN

Any bacterial surface protein that provokes endocytic uptake by host cells. Adhesins, on the other hand, promote binding to cell surface receptors, but do not elicit uptake by the host cell.

JELLY-ROLL MOTIF

These motifs are found in proteins in which the primary fold contains only β-antiparallel strands. Like other elements of super-secondary structure involving the β-strand (for example, the β–α–α–β unit) the known structure forms a right-handed superhelix.

LINNAEAN APPROACH

The first formal classification scheme was created by Carolus Linnaeus and relied on classification of species according to hierarchical structure, from most general to most similar. However, this scheme ignores their evolutionary history, and important aspects of the origin of those similarities and differences are overlooked.

SNAREs

Soluble NSF (N-ethylmaleimide-sensitive fusion protein) accessory protein (SNAP) receptor). These proteins contain a heptad repeat of 60–90 residues that participate in coiled-coil formation. The family of SNARE proteins are involved in intracellular fusion events.

THREADING ANALYSIS

This method uses computer modelling to obtain structural information based on the amino-acid sequence of an uncharacterized protein structure. Threading analysis is mostly used to detect remote homologues that can not be detected by standard sequence alignment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barocchi, M., Masignani, V. & Rappuoli, R. Cell entry machines: a common theme in nature?. Nat Rev Microbiol 3, 349–358 (2005). https://doi.org/10.1038/nrmicro1131

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro1131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing