Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The tad locus: postcards from the widespread colonization island

Key Points

  • The tad (tight adherence) locus was initially identified in the periodontal pathogen Aggregatibacter (Actinobacillus) actinomycetemcomitans and the aquatic bacterium Caulobacter crescentus.

  • The tad genes encode a macromolecular transport system that is required for biogenesis of Flp (fimbrial low-molecular-weight protein) pili. Bundles of Flp pili, called fibrils, are produced by clinical isolates of A. actinomycetemcomitans and are required for tenacious biofilm formation and pathogenesis.

  • Homologues of tad genes are present in all sequenced Archaea and in many, but not all, Gram-negative and Gram-positive bacteria.

  • We suggest that type II macromolecular transport should be defined by the ancient primary association between the TadA and TadB/C homologues (for example, GspE and GspF). The Tad secretion system, along with all archaeal tad-like loci, would represent one major subtype of type II secretion, while the other major subtype would contain classical type II secretion and type IV pilus systems.

  • Some Tad proteins are homologous to components of bacterial type II or type IV secretion systems, but almost all of the tad genes comprise early branching, anciently diverged lineages. For instance, the Flp proteins belong to a distinct subfamily of type IVb prepilins.

  • Several Tad proteins (such as RcpC, RcpB, TadZ, TadD, TadE, TadF and TadG) seem to be unique to the Tad macromolecular transport system.

  • There is accumulating evidence to show that tad loci are important for colonization and/or pathogenesis of a number of bacterial species, including A. actinomycetemcomitans, Aggregatibacter (Haemophilus) aphrophilus, C. crescentus, Haemophilus ducreyi, Pasteurella multocida, Pseudomonas aeruginosa, Yersinia ruckeri and Burkholderia pseudomallei.

  • The functions of individual Tad proteins, as well as their interactions within the Tad apparatus, are just beginning to be dissected. Future studies of the Tad macromolecular transport system will undoubtedly reveal its unique features, as well as further illuminate prokaryotic protein secretion in general.

Abstract

The Tad (tight adherence) macromolecular transport system, which is present in many bacterial and archaeal species, represents an ancient and major new subtype of type II secretion. The tad genes are present on a genomic island named the widespread colonization island (WCI), and encode the machinery that is required for the assembly of adhesive Flp (fimbrial low-molecular-weight protein) pili. The tad genes are essential for biofilm formation, colonization and pathogenesis in the genera Aggregatibacter (Actinobacillus), Haemophilus, Pasteurella, Pseudomonas, Yersinia, Caulobacter and perhaps others. Here we review the structure, function and evolution of the Tad secretion system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical maps of tad loci from Gram-negative bacteria, Actinobacteria and Archaea.
Figure 2: Phylogenetic tree of bacterial and archaeal secretion NTPases.
Figure 3: Flp fibrils from Aggregatibacter (Actinobacillus) actinomycetemcomitans.
Figure 4: Hypothetical structure and function of the Tad secretion system.

Similar content being viewed by others

References

  1. Rosan, B. et al. Actinobacillus actinomycetemcomitans fimbriae. Oral Microbiol. Immunol. 3, 58–63 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Scannapieco, F. A., Kornman, K. S. & Coykendall, A. L. Observation of fimbriae and flagella in dispersed subgingival dental plaque and fresh bacterial isolates from periodontal disease. J. Periodontal Res. 18, 620–633 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Scannapieco, F. A., Millar, S. J., Reynolds, H. S., Zambon, J. J. & Levine, M. J. Effect of anaerobiosis on the surface ultrastructure and surface proteins of Actinobacillus actinomycetemcomitans (Haemophilus actinomycetemcomitans). Infect. Immun. 55, 2320–2323 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Inouye, T., Ohta, H., Kokeguchi, S., Fukui, K. & Kato, K. Colonial variation and fimbriation of Actinobacillus actinomycetemcomitans. FEMS Microbiol. Lett. 69, 13–18 (1990).

    Article  CAS  Google Scholar 

  5. Fives-Taylor, P. M., Meyer, D. H., Mintz, K. P. & Brissette, C. Virulence factors of Actinobacillus actinomycetemcomitans. Periodontol. 2000 20, 136–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Henderson, B., Nair, S. P., Ward, J. M. & Wilson, M. Molecular pathogenicity of the oral opportunistic pathogen Actinobacillus actinomycetemcomitans. Annu. Rev. Microbiol. 57, 29–55 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Meyer, D. H. & Fives-Taylor, P. M. Oral pathogens: from dental plaque to cardiac disease. Curr. Opin. Microbiol. 1, 88–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Fine, D. H. et al. Phenotypic variation in Actinobacillus actinomycetemcomitans during laboratory growth: implications for virulence. Microbiology 145, 1335–1347 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Preus, H. R., Namork, E. & Olsen, I. Fimbriation of Actinobacillus actinomycetemcomitans. Oral Microbiol. Immunol. 3, 93–94 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Inoue, T. et al. Molecular characterization of low-molecular-weight component protein, Flp, in Actinobacillus actinomycetemcomitans fimbriae. Microbiol. Immunol. 42, 253–258 (1998). The first study to identify Flp (Flp1) as the major structural component of Flp pili in A. actinomycetemcomitans.

    Article  CAS  PubMed  Google Scholar 

  11. Wu, H. & Fives-Taylor, P. M. Molecular strategies for fimbrial expression and assembly. Crit. Rev. Oral Biol. Med. 12, 101–115 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez, L. A. & Berenguer, J. Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiol. Rev. 24, 21–44 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Mattick, J. S. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56, 289–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Telford, J. L., Barocchi, M. A., Margarit, I., Rappuoli, R. & Grandi, G. Pili in Gram-positive pathogens. Nature Rev. Microbiol. 4, 509–519 (2006).

    Article  CAS  Google Scholar 

  15. Sauer, F. G., Remaut, H., Hultgren, S. J. & Waksman, G. Fiber assembly by the chaperone-usher pathway. Biochim. Biophys. Acta 1694, 259–267 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Kachlany, S. C. et al. Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea. J. Bacteriol. 182, 6169–6176 (2000). Identification of the A. actinomycetemcomitans tad locus and initial study reporting the widespread nature of tad loci in Bacteria and Archaea.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kachlany, S. C. et al. flp-1, the first representative of a new pilin gene subfamily, is required for non-specific adherence of Actinobacillus actinomycetemcomitans. Mol. Microbiol 40, 542–554 (2001). Identification of the Flp-subfamily of type IVb prepilins and in-depth phylogenetic analysis of type IV prepilins.

    Article  CAS  PubMed  Google Scholar 

  18. Planet, P. J., Kachlany, S. C., Fine, D. H., DeSalle, R. & Figurski, D. H. The widespread colonization island of Actinobacillus actinomycetemcomitans. Nature Genet. 34, 193–198 (2003). A study that demonstrates that tad genes are harboured on the WCI genomic island, and that traces the evolutionary history of the WCI in the context of its role in pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  19. Perez, B. A. et al. Genetic analysis of the requirement for flp-2, tadV and rcpB in Actinobacillus actinomycetemcomitans biofilm formation. J. Bacteriol. 188, 6361–6375 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haase, E. M., Zmuda, J. L. & Scannapieco, F. A. Identification and molecular analysis of rough-colony-specific outer membrane proteins of Actinobacillus actinomycetemcomitans. Infect. Immun. 67, 2901–2908 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Possot, O. & Pugsley, A. P. Molecular characterization of PulE, a protein required for pullulanase secretion. Mol. Microbiol. 12, 287–299 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Turner, L. R., Lara, J. C., Nunn, D. N. & Lory, S. Mutations in the consensus ATP-binding sites of XcpR and PilB eliminate extracellular protein secretion and pilus biogenesis in Pseudomonas aeruginosa. J. Bacteriol. 175, 4962–4969 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Planet, P. J., Kachlany, S. C., DeSalle, R. & Figurski, D. H. Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc. Natl Acad. Sci. USA 98, 2503–2508 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cao, T. B. & Saier, M. H. J. Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions. Microbiology 147, 3201–3214 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Christie, P. J., Ward, J. E. J., Gordon, M. P. & Nester, E. W. A gene required for transfer of T-DNA to plants encodes an ATPase with autophosphorylating activity. Proc. Natl Acad. Sci. USA 86, 9677–9681 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peabody, C. R. et al. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149, 3051–3072 (2003). A comprehensive study examining the phylogenetic relationships between the conserved components of T2S, T4P and archaeal flagellar biogenesis system proteins.

    Article  CAS  PubMed  Google Scholar 

  27. Thomas, N. A., Mueller, S., Klein, A. & Jarrell, K. F. Mutants in flaI and flaJ of the archaeon Methanococcus voltae are deficient in flagellum assembly. Mol. Microbiol. 46, 879–887 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Tomich, M., Fine, D. H. & Figurski, D. F. The TadV protein of Actinobacillus actinomycetemcomitans is a novel aspartic acid prepilin peptidase required for maturation of the Flp1 pilin and TadE and TadF pseudopilins. J. Bacteriol. 188, 6899–6914 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Skerker, J. M. & Shapiro, L. Identification and cell cycle control of a novel pilus system in Caulobacter crescentus. EMBO J. 19, 3223–3234 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Bentzmann, S., Aurouze, M., Ball, G. & Filloux, A. FppA, a novel Pseudomonas aeruginosa prepilin peptidase involved in assembly of type IVb Pili. J. Bacteriol. 188, 4851–4860 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bodenmiller, D., Toh, E. & Brun, Y. V. Development of surface adhesion in Caulobacter crescentus. J. Bacteriol. 186, 1438–1447 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sommer, J. M. & Newton, A. Turning off flagellum rotation requires the pleiotropic gene pleD: pleA, pleC, and pleD define two morphogenic pathways in Caulobacter crescentus. J. Bacteriol. 171, 392–401 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Entcheva-Dimitrov, P. & Spormann, A. M. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus. J. Bacteriol. 186, 8254–8266 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rosenfeld, J. A., Sarkar, I. N., Planet, P. J., Figurski, D. H. & DeSalle, R. ORFcurator: molecular curation of genes and gene clusters in prokaryotic organisms. Bioinformatics 20, 3462–3465 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Planet, P. J., DeSalle, R. & Figurski, D. H. Function, Evolution and Classification of Macromolecular Transport Systems 189–220 (ASM Press, Washington DC, 2006).

    Google Scholar 

  36. Bardy, S. L. & Jarrell, K. F. FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. FEMS Microbiol. Lett. 208, 53–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Albers, S. V. & Driessen, A. J. Analysis of ATPases of putative secretion operons in the thermoacidophilic archaeon Sulfolobus solfataricus. Microbiology 151, 763–773 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Kachlany, S. C., Planet, P. J., DeSalle, R., Fine, D. H. & Figurski, D. H. Genes for tight adherence of Actinobacillus actinomycetemcomitans: from plaque to plague to pond scum. Trends Microbiol. 9, 429–437 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Albers, S. V., Szabo, Z. & Driessen, A. J. Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J. Bacteriol. 185, 3918–3925 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koski, L. B., Morton, R. A. & Golding, G. B. Codon bias and base composition are poor indicators of horizontally transferred genes. Mol. Biol. Evol. 18, 404–412 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, B. Limitations of compositional approach to identifying horizontally transferred genes. J. Mol. Evol. 53, 244–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Planet, P. J. Tree disagreement: measuring and testing incongruence in phylogenies. J. Biomed. Inform. 39, 86–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Page, R. D. & Charleston, M. A. From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem. Mol. Phylogenet. Evol. 7, 231–240 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Haase, E. M., Stream, J. O. & Scannapieco, F. A. Transcriptional analysis of the 5′ terminus of the flp fimbrial gene cluster from Actinobacillus actinomycetemcomitans. Microbiology 149, 205–215 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, Y., Liu, A. & Chen, C. Genetic basis for conversion of rough-to-smooth colony morphology in Actinobacillus actinomycetemcomitans. Infect. Immun. 73, 3749–3753 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wagner, V. E., Bushnell, D., Passador, L., Brooks, A. I. & Iglewski, B. H. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185, 2080–2095 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schuster, M., Lostroh, C. P., Ogi, T. & Greenberg, E. P. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185, 2066–2079 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Juhas, M. et al. GeneChip expression analysis of the VqsR regulon of Pseudomonas aeruginosa TB. FEMS Microbiol. Lett. 242, 287–295 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Laub, M. T., McAdams, H. H., Feldblyum, T., Fraser, C. M. & Shapiro, L. Global analysis of the genetic network controlling a bacterial cell cycle. Science 290, 2144–2148 (2000).

    CAS  PubMed  Google Scholar 

  50. Viollier, P. H., Sternheim, N. & Shapiro, L. Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins. Proc. Natl Acad. Sci. USA 99, 13831–13836 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Viollier, P. H., Sternheim, N. & Shapiro, L. A dynamically localized histidine kinase controls the asymmetric distribution of polar pili proteins. EMBO J. 21, 4420–4428 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Craig, L., Pique, M. E. & Tainer, J. A. Type IV pilus structure and bacterial pathogenicity. Nature Rev. Microbiol. 2, 363–378 (2004). A state-of-the-art review of the structure and function of type IV pili.

    Article  CAS  Google Scholar 

  53. Skerker, J. M. & Berg, H. C. Direct observation of extension and retraction of type IV pili. Proc. Natl Acad. Sci. USA 98, 6901–6904 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lagenaur, C. & Agabian, N. Caulobacter crescentus pili: structure and stage-specific expression. J. Bacteriol. 131, 340–346 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Strom, M. S. & Lory, S. Structure–function and biogenesis of the type IV pili. Annu. Rev. Microbiol. 47, 565–596 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Parge, H. E. et al. Structure of the fibre-forming protein pilin at 2. 6 Å resolution. Nature 378, 32–38 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Craig, L. et al. Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol. Cell 23, 651–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Craig, L. et al. Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol. Cell 11, 1139–1150 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Dupuy, B. & Pugsley, A. P. Type IV prepilin peptidase gene of Neisseria gonorrhoeae MS11: presence of a related gene in other piliated and nonpiliated Neisseria strains. J. Bacteriol. 176, 1323–1331 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dupuy, B., Taha, M. K., Possot, O., Marchal, C. & Pugsley, A. P. PulO, a component of the pullulanase secretion pathway of Klebsiella oxytoca, correctly and efficiently processes gonococcal type IV prepilin in Escherichia coli. Mol. Microbiol. 6, 1887–1894 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Strom, M. S., Nunn, D. N. & Lory, S. A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc. Natl Acad. Sci. USA 90, 2404–2408 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Inoue, T., Ohta, H., Tanimoto, I., Shingaki, R. & Fukui, K. Heterogeneous post-translational modification of Actinobacillus actinomycetemcomitans fimbrillin. Microbiol. Immunol. 44, 715–718 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Stimson, E. et al. Discovery of a novel protein modification: α-glycerophosphate is a substituent of meningococcal pilin. Biochem. J. 316, 29–33 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stimson, E. et al. Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Mol. Microbiol. 17, 1201–1214 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Marceau, M., Forest, K., Beretti, J. L., Tainer, J. & Nassif, X. Consequences of the loss of O-linked glycosylation of meningococcal type IV pilin on piliation and pilus-mediated adhesion. Mol. Microbiol. 27, 705–715 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Smedley, J. G. et al. Influence of pilin glycosylation on Pseudomonas aeruginosa 1244 pilus function. Infect. Immun. 73, 7922–7931 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, Y. & Chen, C. Mutation analysis of the flp operon in Actinobacillus actinomycetemcomitans. Gene 351, 61–71 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Whittaker, C. A. & Hynes, R. O. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol. Biol. Cell 13, 3369–3387 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sandkvist, M. Biology of type II secretion. Mol. Microbiol. 40, 271–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Alm, R. A. & Mattick, J. S. Identification of two genes with prepilin-like leader sequences involved in type 4 fimbrial biogenesis in Pseudomonas aeruginosa. J. Bacteriol. 178, 3809–3817 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bleves, S. et al. The secretion apparatus of Pseudomonas aeruginosa: identification of a fifth pseudopilin, XcpX (GspK family). Mol. Microbiol. 27, 31–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Alm, R. A., Hallinan, J. P., Watson, A. A. & Mattick, J. S. Fimbrial biogenesis genes of Pseudomonas aeruginosa: pilW and pilX increase the similarity of type 4 fimbriae to the GSP protein-secretion systems and pilY1 encodes a gonococcal PilC homologue. Mol. Microbiol. 22, 161–173 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Vignon, G. et al. Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J. Bacteriol. 185, 3416–3428 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Durand, E. et al. Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J. Bacteriol. 185, 2749–2758 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kuo, W. W., Kuo, H. W., Cheng, C. C., Lai, H. L. & Chen, L. Y. Roles of the minor pseudopilins, XpsH, XpsI and XpsJ, in the formation of XpsG-containing pseudopilus in Xanthomonas campestris pv. campestris. J. Biomed. Sci. 12, 587–599 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Bardy, S. L. & Jarrell, K. F. Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae. Mol. Microbiol. 50, 1339–1347 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. LaPointe, C. F. & Taylor, R. K. The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases. J. Biol. Chem. 275, 1502–1510 (2000). This report demonstrates for the first time that T4P and T2S prepilin peptidases are aspartic acid proteases.

    Article  CAS  PubMed  Google Scholar 

  78. Szabo, Z., Albers, S. V. & Driessen, A. J. Active-site residues in the type IV prepilin peptidase homologue PibD from the archaeon Sulfolobus solfataricus. J. Bacteriol. 188, 1437–1443 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Strom, M. S., Bergman, P. & Lory, S. Identification of active-site cysteines in the conserved domain of PilD, the bifunctional type IV pilin leader peptidase/N-methyltransferase of Pseudomonas aeruginosa. J. Biol. Chem. 268, 15788–15794 (1993).

    CAS  PubMed  Google Scholar 

  80. Nunn, D. N. & Lory, S. Cleavage, methylation, and localization of the Pseudomonas aeruginosa export proteins XcpT, -U, -V, and -W. J. Bacteriol. 175, 4375–4382 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. de Boer, P. A., Crossley, R. E., Hand, A. R. & Rothfield, L. I. The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. EMBO J. 10, 4371–4380 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Davis, M. A., Martin, K. A. & Austin, S. J. Biochemical activities of the ParA partition protein of the P1 plasmid. Mol. Microbiol. 6, 1141–1147 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Hu, Z. & Lutkenhaus, J. Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol. Microbiol. 34, 82–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Raskin, D. M. & de Boer, P. A. J. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl Acad. Sci. USA 96, 4971–4976 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bhattacharjee, M. K., Kachlany, S. C., Fine, D. H. & Figurski, D. H. Nonspecific adherence and fibril biogenesis by Actinobacillus actinomycetemcomitans: TadA protein is an ATPase. J. Bacteriol. 183, 5927–5936 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Crowther, L. J., Yamagata, A., Craig, L., Tainer, J. A. & Donnenberg, M. S. The ATPase activity of BfpD is greatly enhanced by zinc and allosteric interactions with other Bfp proteins. J. Biol. Chem. 280, 24839–24848 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Robien, M. A., Krumm, B. E., Sandkvist, M. & Hol, W. G. J. Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J. Mol. Biol. 333, 657–674 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Krause, S. et al. Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Proc. Natl Acad. Sci. USA 97, 3067–3072 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Crowther, L. J., Anantha, R. P. & Donnenberg, M. S. The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine. Mol. Microbiol. 52, 67–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Rashkova, S., Zhou, X. R., Chen, J. & Christie, P. J. Self-assembly of the Agrobacterium tumefaciens VirB11 traffic ATPase. J. Bacteriol. 182, 4137–4145 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Py, B., Loiseau, L. & Barras, F. An inner membrane platform in the type II secretion machinery of Gram-negative bacteria. EMBO Rep. 2, 244–248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bayan, N., Guilvout, I. & Pugsley, A. P. Secretins take shape. Mol. Microbiol. 60, 1–4 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Collins, R. F., Davidsen, L., Derrick, J. P., Ford, R. C. & Tonjum, T. Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J. Bacteriol. 183, 3825–3832 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Linderoth, N. A., M. N., S . & Russel, M. The filamentous phage pIV multimer visualized by scanning transmission electron microscopy. Science 278, 1635–1638 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Iyer, L. M. & Aravind, L. The emergence of catalytic and structural diversity within the β-clip fold. Proteins 55, 977–991 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Nambu, T. & Kutsukake, K. The Salmonella FlgA protein, a putative periplasmic chaperone essential for flagellar P ring formation. Microbiology 146, 1171–1178 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Sankaran, K. & Wu, H. C. Lipid modification of bacterial prolipoprotein. J. Biol. Chem. 269, 19701–19706 (1994).

    CAS  PubMed  Google Scholar 

  98. Yamaguchi, K., Yu, F. & Inouye, M. A single amino acid determinant of the membrane localization of lipoproteins in E. coli. Cell 53, 423–432 (1988).

    Article  CAS  PubMed  Google Scholar 

  99. Shevchik, V. E. & Condemine, G. Functional characterization of the Erwinia chrysanthemi OutS protein, an element of a type II secretion system. Microbiology 144, 3219–3228 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Hardie, K. R., Lory, S. & Pugsley, A. P. Insertion of an outer membrane protein in Escherichia coli requires a chaperone-like protein. EMBO J. 15, 978–988 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nudleman, E., Wall, D. & Kaiser, D. Polar assembly of the type IV pilus secretin in Myxococcus xanthus. Mol. Microbiol. 60, 16–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Carbonnelle, E., Helaine, S., Prouvensier, L., Nassif, X. & Pelicic, V. Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. Mol. Microbiol. 55, 54–64 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Schreiner, H. C. et al. Tight-adherence genes of Actinobacillus actinomycetemcomitans are required for virulence in a rat model. Proc. Natl Acad. Sci. USA 100, 7295–7300 (2003). This study shows that the tad genes of A. actinomycetemcomitans are required for colonization, persistence and bone loss in rats inoculated through the natural route of infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Alfa, M. J. et al. Use of tissue culture and animal models to identify virulence-associated traits of Haemophilus ducreyi. Infect. Immun. 63, 1754–1761 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Nika, J. R. et al. Haemophilus ducreyi requires the flp gene cluster for microcolony formation in vitro. Infect. Immun. 70, 2965–2975 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Spinola, S. M. et al. Haemophilus ducreyi requires an intact flp gene cluster for virulence in humans. Infect. Immun. 71, 7178–7182 (2003). This study demonstrates the requirement of tad genes of H. ducreyi for pathogenesis in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fuller, T. E., Kennedy, M. J. & Lowery, D. E. Identification of Pasteurella multocida virulence genes in a septicemic mouse model using signature-tagged mutagenesis. Microb. Pathog. 29, 25–38 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Fernandez, L., Marquez, I. & Guijarro, J. A. Identification of specific in vivo-induced (ivi) genes in Yersinia ruckeri and analysis of ruckerbactin, a catecholate siderophore iron acquisition system. Appl. Environ. Microbiol. 70, 5199–5207 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Harper, M., Boyce, J. D., Wilkie, I. W. & Adler, B. Signature-tagged mutagenesis of Pasteurella multocida identifies mutants displaying differential virulence characteristics in mice and chickens. Infect. Immun. 71, 5440–5446 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Isaacson, R. E. & Trigo, E. Pili of Pasteurella multocida of porcine origin. FEMS Microbiol. Lett. 132, 247–251 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and D. G. Higgins . The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all members of the Figurski laboratory, and particularly B. Perez, S. Clock and V. Weaver Grosso, for helpful discussions that greatly strengthened this manuscript. We are deeply indebted to D. Fine and R. DeSalle for their considerable help and encouragement. We are also grateful to Y. Puius for assistance with electron microscopy, and to J. Boddey for sharing unpublished results. D.H.F. is particularly grateful to S. Silverstein and A. Mitchell for their support. This work was supported by grants to D.H.F. and to R. DeSalle and D.H.F. from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Figurski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1

Phylogenetic tree of bacterial and archaeal secretion NTPases. (PDF 157 kb)

Related links

Related links

DATABASES

Entrez Genome Project

Actinobacillus actinomycetemcomitans

Bordetella pertussis

Burkholderia pseudomallei

Caulobacter crescentus

Mesorhizobium loti

Mycobacterium tuberculosis

Neisseria gonorrhoeae

Neisseria meningitidis

Pseudomonas aeruginosa

Sinorhizobium meliloti

Vibrio cholerae

Vibrio vulnificus

Yersinia pestis

FURTHER INFORMATION

C. crescentus

Glossary

Genomic island

A mobile genetic element acquired by horizontal transfer, which carries multiple genes that are typically involved in pathogenesis or symbiosis.

Capnophilic

Bacterial species that grow best in the presence of elevated levels of carbon dioxide, relative to air.

Twitching motility

A flagellum-independent motility on solid surfaces exhibited by some Gram-negative bacteria, mediated by retraction of type IV pili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomich, M., Planet, P. & Figurski, D. The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol 5, 363–375 (2007). https://doi.org/10.1038/nrmicro1636

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro1636

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing