Key Points
-
The tad (tight adherence) locus was initially identified in the periodontal pathogen Aggregatibacter (Actinobacillus) actinomycetemcomitans and the aquatic bacterium Caulobacter crescentus.
-
The tad genes encode a macromolecular transport system that is required for biogenesis of Flp (fimbrial low-molecular-weight protein) pili. Bundles of Flp pili, called fibrils, are produced by clinical isolates of A. actinomycetemcomitans and are required for tenacious biofilm formation and pathogenesis.
-
Homologues of tad genes are present in all sequenced Archaea and in many, but not all, Gram-negative and Gram-positive bacteria.
-
We suggest that type II macromolecular transport should be defined by the ancient primary association between the TadA and TadB/C homologues (for example, GspE and GspF). The Tad secretion system, along with all archaeal tad-like loci, would represent one major subtype of type II secretion, while the other major subtype would contain classical type II secretion and type IV pilus systems.
-
Some Tad proteins are homologous to components of bacterial type II or type IV secretion systems, but almost all of the tad genes comprise early branching, anciently diverged lineages. For instance, the Flp proteins belong to a distinct subfamily of type IVb prepilins.
-
Several Tad proteins (such as RcpC, RcpB, TadZ, TadD, TadE, TadF and TadG) seem to be unique to the Tad macromolecular transport system.
-
There is accumulating evidence to show that tad loci are important for colonization and/or pathogenesis of a number of bacterial species, including A. actinomycetemcomitans, Aggregatibacter (Haemophilus) aphrophilus, C. crescentus, Haemophilus ducreyi, Pasteurella multocida, Pseudomonas aeruginosa, Yersinia ruckeri and Burkholderia pseudomallei.
-
The functions of individual Tad proteins, as well as their interactions within the Tad apparatus, are just beginning to be dissected. Future studies of the Tad macromolecular transport system will undoubtedly reveal its unique features, as well as further illuminate prokaryotic protein secretion in general.
Abstract
The Tad (tight adherence) macromolecular transport system, which is present in many bacterial and archaeal species, represents an ancient and major new subtype of type II secretion. The tad genes are present on a genomic island named the widespread colonization island (WCI), and encode the machinery that is required for the assembly of adhesive Flp (fimbrial low-molecular-weight protein) pili. The tad genes are essential for biofilm formation, colonization and pathogenesis in the genera Aggregatibacter (Actinobacillus), Haemophilus, Pasteurella, Pseudomonas, Yersinia, Caulobacter and perhaps others. Here we review the structure, function and evolution of the Tad secretion system.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Rosan, B. et al. Actinobacillus actinomycetemcomitans fimbriae. Oral Microbiol. Immunol. 3, 58–63 (1988).
Scannapieco, F. A., Kornman, K. S. & Coykendall, A. L. Observation of fimbriae and flagella in dispersed subgingival dental plaque and fresh bacterial isolates from periodontal disease. J. Periodontal Res. 18, 620–633 (1983).
Scannapieco, F. A., Millar, S. J., Reynolds, H. S., Zambon, J. J. & Levine, M. J. Effect of anaerobiosis on the surface ultrastructure and surface proteins of Actinobacillus actinomycetemcomitans (Haemophilus actinomycetemcomitans). Infect. Immun. 55, 2320–2323 (1987).
Inouye, T., Ohta, H., Kokeguchi, S., Fukui, K. & Kato, K. Colonial variation and fimbriation of Actinobacillus actinomycetemcomitans. FEMS Microbiol. Lett. 69, 13–18 (1990).
Fives-Taylor, P. M., Meyer, D. H., Mintz, K. P. & Brissette, C. Virulence factors of Actinobacillus actinomycetemcomitans. Periodontol. 2000 20, 136–167 (1999).
Henderson, B., Nair, S. P., Ward, J. M. & Wilson, M. Molecular pathogenicity of the oral opportunistic pathogen Actinobacillus actinomycetemcomitans. Annu. Rev. Microbiol. 57, 29–55 (2003).
Meyer, D. H. & Fives-Taylor, P. M. Oral pathogens: from dental plaque to cardiac disease. Curr. Opin. Microbiol. 1, 88–95 (1998).
Fine, D. H. et al. Phenotypic variation in Actinobacillus actinomycetemcomitans during laboratory growth: implications for virulence. Microbiology 145, 1335–1347 (1999).
Preus, H. R., Namork, E. & Olsen, I. Fimbriation of Actinobacillus actinomycetemcomitans. Oral Microbiol. Immunol. 3, 93–94 (1988).
Inoue, T. et al. Molecular characterization of low-molecular-weight component protein, Flp, in Actinobacillus actinomycetemcomitans fimbriae. Microbiol. Immunol. 42, 253–258 (1998). The first study to identify Flp (Flp1) as the major structural component of Flp pili in A. actinomycetemcomitans.
Wu, H. & Fives-Taylor, P. M. Molecular strategies for fimbrial expression and assembly. Crit. Rev. Oral Biol. Med. 12, 101–115 (2001).
Fernandez, L. A. & Berenguer, J. Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiol. Rev. 24, 21–44 (2000).
Mattick, J. S. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56, 289–314 (2002).
Telford, J. L., Barocchi, M. A., Margarit, I., Rappuoli, R. & Grandi, G. Pili in Gram-positive pathogens. Nature Rev. Microbiol. 4, 509–519 (2006).
Sauer, F. G., Remaut, H., Hultgren, S. J. & Waksman, G. Fiber assembly by the chaperone-usher pathway. Biochim. Biophys. Acta 1694, 259–267 (2004).
Kachlany, S. C. et al. Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea. J. Bacteriol. 182, 6169–6176 (2000). Identification of the A. actinomycetemcomitans tad locus and initial study reporting the widespread nature of tad loci in Bacteria and Archaea.
Kachlany, S. C. et al. flp-1, the first representative of a new pilin gene subfamily, is required for non-specific adherence of Actinobacillus actinomycetemcomitans. Mol. Microbiol 40, 542–554 (2001). Identification of the Flp-subfamily of type IVb prepilins and in-depth phylogenetic analysis of type IV prepilins.
Planet, P. J., Kachlany, S. C., Fine, D. H., DeSalle, R. & Figurski, D. H. The widespread colonization island of Actinobacillus actinomycetemcomitans. Nature Genet. 34, 193–198 (2003). A study that demonstrates that tad genes are harboured on the WCI genomic island, and that traces the evolutionary history of the WCI in the context of its role in pathogenesis.
Perez, B. A. et al. Genetic analysis of the requirement for flp-2, tadV and rcpB in Actinobacillus actinomycetemcomitans biofilm formation. J. Bacteriol. 188, 6361–6375 (2006).
Haase, E. M., Zmuda, J. L. & Scannapieco, F. A. Identification and molecular analysis of rough-colony-specific outer membrane proteins of Actinobacillus actinomycetemcomitans. Infect. Immun. 67, 2901–2908 (1999).
Possot, O. & Pugsley, A. P. Molecular characterization of PulE, a protein required for pullulanase secretion. Mol. Microbiol. 12, 287–299 (1994).
Turner, L. R., Lara, J. C., Nunn, D. N. & Lory, S. Mutations in the consensus ATP-binding sites of XcpR and PilB eliminate extracellular protein secretion and pilus biogenesis in Pseudomonas aeruginosa. J. Bacteriol. 175, 4962–4969 (1993).
Planet, P. J., Kachlany, S. C., DeSalle, R. & Figurski, D. H. Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc. Natl Acad. Sci. USA 98, 2503–2508 (2001).
Cao, T. B. & Saier, M. H. J. Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions. Microbiology 147, 3201–3214 (2001).
Christie, P. J., Ward, J. E. J., Gordon, M. P. & Nester, E. W. A gene required for transfer of T-DNA to plants encodes an ATPase with autophosphorylating activity. Proc. Natl Acad. Sci. USA 86, 9677–9681 (1989).
Peabody, C. R. et al. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149, 3051–3072 (2003). A comprehensive study examining the phylogenetic relationships between the conserved components of T2S, T4P and archaeal flagellar biogenesis system proteins.
Thomas, N. A., Mueller, S., Klein, A. & Jarrell, K. F. Mutants in flaI and flaJ of the archaeon Methanococcus voltae are deficient in flagellum assembly. Mol. Microbiol. 46, 879–887 (2002).
Tomich, M., Fine, D. H. & Figurski, D. F. The TadV protein of Actinobacillus actinomycetemcomitans is a novel aspartic acid prepilin peptidase required for maturation of the Flp1 pilin and TadE and TadF pseudopilins. J. Bacteriol. 188, 6899–6914 (2006).
Skerker, J. M. & Shapiro, L. Identification and cell cycle control of a novel pilus system in Caulobacter crescentus. EMBO J. 19, 3223–3234 (2000).
de Bentzmann, S., Aurouze, M., Ball, G. & Filloux, A. FppA, a novel Pseudomonas aeruginosa prepilin peptidase involved in assembly of type IVb Pili. J. Bacteriol. 188, 4851–4860 (2006).
Bodenmiller, D., Toh, E. & Brun, Y. V. Development of surface adhesion in Caulobacter crescentus. J. Bacteriol. 186, 1438–1447 (2004).
Sommer, J. M. & Newton, A. Turning off flagellum rotation requires the pleiotropic gene pleD: pleA, pleC, and pleD define two morphogenic pathways in Caulobacter crescentus. J. Bacteriol. 171, 392–401 (1989).
Entcheva-Dimitrov, P. & Spormann, A. M. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus. J. Bacteriol. 186, 8254–8266 (2004).
Rosenfeld, J. A., Sarkar, I. N., Planet, P. J., Figurski, D. H. & DeSalle, R. ORFcurator: molecular curation of genes and gene clusters in prokaryotic organisms. Bioinformatics 20, 3462–3465 (2004).
Planet, P. J., DeSalle, R. & Figurski, D. H. Function, Evolution and Classification of Macromolecular Transport Systems 189–220 (ASM Press, Washington DC, 2006).
Bardy, S. L. & Jarrell, K. F. FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. FEMS Microbiol. Lett. 208, 53–59 (2002).
Albers, S. V. & Driessen, A. J. Analysis of ATPases of putative secretion operons in the thermoacidophilic archaeon Sulfolobus solfataricus. Microbiology 151, 763–773 (2005).
Kachlany, S. C., Planet, P. J., DeSalle, R., Fine, D. H. & Figurski, D. H. Genes for tight adherence of Actinobacillus actinomycetemcomitans: from plaque to plague to pond scum. Trends Microbiol. 9, 429–437 (2001).
Albers, S. V., Szabo, Z. & Driessen, A. J. Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J. Bacteriol. 185, 3918–3925 (2003).
Koski, L. B., Morton, R. A. & Golding, G. B. Codon bias and base composition are poor indicators of horizontally transferred genes. Mol. Biol. Evol. 18, 404–412 (2001).
Wang, B. Limitations of compositional approach to identifying horizontally transferred genes. J. Mol. Evol. 53, 244–250 (2001).
Planet, P. J. Tree disagreement: measuring and testing incongruence in phylogenies. J. Biomed. Inform. 39, 86–102 (2006).
Page, R. D. & Charleston, M. A. From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem. Mol. Phylogenet. Evol. 7, 231–240 (1997).
Haase, E. M., Stream, J. O. & Scannapieco, F. A. Transcriptional analysis of the 5′ terminus of the flp fimbrial gene cluster from Actinobacillus actinomycetemcomitans. Microbiology 149, 205–215 (2003).
Wang, Y., Liu, A. & Chen, C. Genetic basis for conversion of rough-to-smooth colony morphology in Actinobacillus actinomycetemcomitans. Infect. Immun. 73, 3749–3753 (2005).
Wagner, V. E., Bushnell, D., Passador, L., Brooks, A. I. & Iglewski, B. H. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185, 2080–2095 (2003).
Schuster, M., Lostroh, C. P., Ogi, T. & Greenberg, E. P. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185, 2066–2079 (2003).
Juhas, M. et al. GeneChip expression analysis of the VqsR regulon of Pseudomonas aeruginosa TB. FEMS Microbiol. Lett. 242, 287–295 (2005).
Laub, M. T., McAdams, H. H., Feldblyum, T., Fraser, C. M. & Shapiro, L. Global analysis of the genetic network controlling a bacterial cell cycle. Science 290, 2144–2148 (2000).
Viollier, P. H., Sternheim, N. & Shapiro, L. Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins. Proc. Natl Acad. Sci. USA 99, 13831–13836 (2002).
Viollier, P. H., Sternheim, N. & Shapiro, L. A dynamically localized histidine kinase controls the asymmetric distribution of polar pili proteins. EMBO J. 21, 4420–4428 (2002).
Craig, L., Pique, M. E. & Tainer, J. A. Type IV pilus structure and bacterial pathogenicity. Nature Rev. Microbiol. 2, 363–378 (2004). A state-of-the-art review of the structure and function of type IV pili.
Skerker, J. M. & Berg, H. C. Direct observation of extension and retraction of type IV pili. Proc. Natl Acad. Sci. USA 98, 6901–6904 (2001).
Lagenaur, C. & Agabian, N. Caulobacter crescentus pili: structure and stage-specific expression. J. Bacteriol. 131, 340–346 (1977).
Strom, M. S. & Lory, S. Structure–function and biogenesis of the type IV pili. Annu. Rev. Microbiol. 47, 565–596 (1993).
Parge, H. E. et al. Structure of the fibre-forming protein pilin at 2. 6 Å resolution. Nature 378, 32–38 (1995).
Craig, L. et al. Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol. Cell 23, 651–662 (2006).
Craig, L. et al. Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol. Cell 11, 1139–1150 (2003).
Dupuy, B. & Pugsley, A. P. Type IV prepilin peptidase gene of Neisseria gonorrhoeae MS11: presence of a related gene in other piliated and nonpiliated Neisseria strains. J. Bacteriol. 176, 1323–1331 (1994).
Dupuy, B., Taha, M. K., Possot, O., Marchal, C. & Pugsley, A. P. PulO, a component of the pullulanase secretion pathway of Klebsiella oxytoca, correctly and efficiently processes gonococcal type IV prepilin in Escherichia coli. Mol. Microbiol. 6, 1887–1894 (1992).
Strom, M. S., Nunn, D. N. & Lory, S. A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc. Natl Acad. Sci. USA 90, 2404–2408 (1993).
Inoue, T., Ohta, H., Tanimoto, I., Shingaki, R. & Fukui, K. Heterogeneous post-translational modification of Actinobacillus actinomycetemcomitans fimbrillin. Microbiol. Immunol. 44, 715–718 (2000).
Stimson, E. et al. Discovery of a novel protein modification: α-glycerophosphate is a substituent of meningococcal pilin. Biochem. J. 316, 29–33 (1996).
Stimson, E. et al. Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Mol. Microbiol. 17, 1201–1214 (1995).
Marceau, M., Forest, K., Beretti, J. L., Tainer, J. & Nassif, X. Consequences of the loss of O-linked glycosylation of meningococcal type IV pilin on piliation and pilus-mediated adhesion. Mol. Microbiol. 27, 705–715 (1998).
Smedley, J. G. et al. Influence of pilin glycosylation on Pseudomonas aeruginosa 1244 pilus function. Infect. Immun. 73, 7922–7931 (2005).
Wang, Y. & Chen, C. Mutation analysis of the flp operon in Actinobacillus actinomycetemcomitans. Gene 351, 61–71 (2005).
Whittaker, C. A. & Hynes, R. O. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol. Biol. Cell 13, 3369–3387 (2002).
Sandkvist, M. Biology of type II secretion. Mol. Microbiol. 40, 271–283 (2001).
Alm, R. A. & Mattick, J. S. Identification of two genes with prepilin-like leader sequences involved in type 4 fimbrial biogenesis in Pseudomonas aeruginosa. J. Bacteriol. 178, 3809–3817 (1996).
Bleves, S. et al. The secretion apparatus of Pseudomonas aeruginosa: identification of a fifth pseudopilin, XcpX (GspK family). Mol. Microbiol. 27, 31–40 (1998).
Alm, R. A., Hallinan, J. P., Watson, A. A. & Mattick, J. S. Fimbrial biogenesis genes of Pseudomonas aeruginosa: pilW and pilX increase the similarity of type 4 fimbriae to the GSP protein-secretion systems and pilY1 encodes a gonococcal PilC homologue. Mol. Microbiol. 22, 161–173 (1996).
Vignon, G. et al. Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J. Bacteriol. 185, 3416–3428 (2003).
Durand, E. et al. Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J. Bacteriol. 185, 2749–2758 (2003).
Kuo, W. W., Kuo, H. W., Cheng, C. C., Lai, H. L. & Chen, L. Y. Roles of the minor pseudopilins, XpsH, XpsI and XpsJ, in the formation of XpsG-containing pseudopilus in Xanthomonas campestris pv. campestris. J. Biomed. Sci. 12, 587–599 (2005).
Bardy, S. L. & Jarrell, K. F. Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae. Mol. Microbiol. 50, 1339–1347 (2003).
LaPointe, C. F. & Taylor, R. K. The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases. J. Biol. Chem. 275, 1502–1510 (2000). This report demonstrates for the first time that T4P and T2S prepilin peptidases are aspartic acid proteases.
Szabo, Z., Albers, S. V. & Driessen, A. J. Active-site residues in the type IV prepilin peptidase homologue PibD from the archaeon Sulfolobus solfataricus. J. Bacteriol. 188, 1437–1443 (2006).
Strom, M. S., Bergman, P. & Lory, S. Identification of active-site cysteines in the conserved domain of PilD, the bifunctional type IV pilin leader peptidase/N-methyltransferase of Pseudomonas aeruginosa. J. Biol. Chem. 268, 15788–15794 (1993).
Nunn, D. N. & Lory, S. Cleavage, methylation, and localization of the Pseudomonas aeruginosa export proteins XcpT, -U, -V, and -W. J. Bacteriol. 175, 4375–4382 (1993).
de Boer, P. A., Crossley, R. E., Hand, A. R. & Rothfield, L. I. The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. EMBO J. 10, 4371–4380 (1991).
Davis, M. A., Martin, K. A. & Austin, S. J. Biochemical activities of the ParA partition protein of the P1 plasmid. Mol. Microbiol. 6, 1141–1147 (1992).
Hu, Z. & Lutkenhaus, J. Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol. Microbiol. 34, 82–90 (1999).
Raskin, D. M. & de Boer, P. A. J. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl Acad. Sci. USA 96, 4971–4976 (1999).
Bhattacharjee, M. K., Kachlany, S. C., Fine, D. H. & Figurski, D. H. Nonspecific adherence and fibril biogenesis by Actinobacillus actinomycetemcomitans: TadA protein is an ATPase. J. Bacteriol. 183, 5927–5936 (2001).
Crowther, L. J., Yamagata, A., Craig, L., Tainer, J. A. & Donnenberg, M. S. The ATPase activity of BfpD is greatly enhanced by zinc and allosteric interactions with other Bfp proteins. J. Biol. Chem. 280, 24839–24848 (2005).
Robien, M. A., Krumm, B. E., Sandkvist, M. & Hol, W. G. J. Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J. Mol. Biol. 333, 657–674 (2003).
Krause, S. et al. Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Proc. Natl Acad. Sci. USA 97, 3067–3072 (2000).
Crowther, L. J., Anantha, R. P. & Donnenberg, M. S. The inner membrane subassembly of the enteropathogenic Escherichia coli bundle-forming pilus machine. Mol. Microbiol. 52, 67–79 (2004).
Rashkova, S., Zhou, X. R., Chen, J. & Christie, P. J. Self-assembly of the Agrobacterium tumefaciens VirB11 traffic ATPase. J. Bacteriol. 182, 4137–4145 (2000).
Py, B., Loiseau, L. & Barras, F. An inner membrane platform in the type II secretion machinery of Gram-negative bacteria. EMBO Rep. 2, 244–248 (2001).
Bayan, N., Guilvout, I. & Pugsley, A. P. Secretins take shape. Mol. Microbiol. 60, 1–4 (2006).
Collins, R. F., Davidsen, L., Derrick, J. P., Ford, R. C. & Tonjum, T. Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J. Bacteriol. 183, 3825–3832 (2001).
Linderoth, N. A., M. N., S . & Russel, M. The filamentous phage pIV multimer visualized by scanning transmission electron microscopy. Science 278, 1635–1638 (1997).
Iyer, L. M. & Aravind, L. The emergence of catalytic and structural diversity within the β-clip fold. Proteins 55, 977–991 (2004).
Nambu, T. & Kutsukake, K. The Salmonella FlgA protein, a putative periplasmic chaperone essential for flagellar P ring formation. Microbiology 146, 1171–1178 (2000).
Sankaran, K. & Wu, H. C. Lipid modification of bacterial prolipoprotein. J. Biol. Chem. 269, 19701–19706 (1994).
Yamaguchi, K., Yu, F. & Inouye, M. A single amino acid determinant of the membrane localization of lipoproteins in E. coli. Cell 53, 423–432 (1988).
Shevchik, V. E. & Condemine, G. Functional characterization of the Erwinia chrysanthemi OutS protein, an element of a type II secretion system. Microbiology 144, 3219–3228 (1998).
Hardie, K. R., Lory, S. & Pugsley, A. P. Insertion of an outer membrane protein in Escherichia coli requires a chaperone-like protein. EMBO J. 15, 978–988 (1996).
Nudleman, E., Wall, D. & Kaiser, D. Polar assembly of the type IV pilus secretin in Myxococcus xanthus. Mol. Microbiol. 60, 16–29 (2006).
Carbonnelle, E., Helaine, S., Prouvensier, L., Nassif, X. & Pelicic, V. Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. Mol. Microbiol. 55, 54–64 (2005).
Schreiner, H. C. et al. Tight-adherence genes of Actinobacillus actinomycetemcomitans are required for virulence in a rat model. Proc. Natl Acad. Sci. USA 100, 7295–7300 (2003). This study shows that the tad genes of A. actinomycetemcomitans are required for colonization, persistence and bone loss in rats inoculated through the natural route of infection.
Alfa, M. J. et al. Use of tissue culture and animal models to identify virulence-associated traits of Haemophilus ducreyi. Infect. Immun. 63, 1754–1761 (1995).
Nika, J. R. et al. Haemophilus ducreyi requires the flp gene cluster for microcolony formation in vitro. Infect. Immun. 70, 2965–2975 (2002).
Spinola, S. M. et al. Haemophilus ducreyi requires an intact flp gene cluster for virulence in humans. Infect. Immun. 71, 7178–7182 (2003). This study demonstrates the requirement of tad genes of H. ducreyi for pathogenesis in humans.
Fuller, T. E., Kennedy, M. J. & Lowery, D. E. Identification of Pasteurella multocida virulence genes in a septicemic mouse model using signature-tagged mutagenesis. Microb. Pathog. 29, 25–38 (2000).
Fernandez, L., Marquez, I. & Guijarro, J. A. Identification of specific in vivo-induced (ivi) genes in Yersinia ruckeri and analysis of ruckerbactin, a catecholate siderophore iron acquisition system. Appl. Environ. Microbiol. 70, 5199–5207 (2004).
Harper, M., Boyce, J. D., Wilkie, I. W. & Adler, B. Signature-tagged mutagenesis of Pasteurella multocida identifies mutants displaying differential virulence characteristics in mice and chickens. Infect. Immun. 71, 5440–5446 (2003).
Isaacson, R. E. & Trigo, E. Pili of Pasteurella multocida of porcine origin. FEMS Microbiol. Lett. 132, 247–251 (1995).
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and D. G. Higgins . The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882 (1997).
Acknowledgements
The authors would like to thank all members of the Figurski laboratory, and particularly B. Perez, S. Clock and V. Weaver Grosso, for helpful discussions that greatly strengthened this manuscript. We are deeply indebted to D. Fine and R. DeSalle for their considerable help and encouragement. We are also grateful to Y. Puius for assistance with electron microscopy, and to J. Boddey for sharing unpublished results. D.H.F. is particularly grateful to S. Silverstein and A. Mitchell for their support. This work was supported by grants to D.H.F. and to R. DeSalle and D.H.F. from the US National Institutes of Health.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information S1
Phylogenetic tree of bacterial and archaeal secretion NTPases. (PDF 157 kb)
Related links
Related links
DATABASES
Entrez Genome Project
Actinobacillus actinomycetemcomitans
FURTHER INFORMATION
Glossary
- Genomic island
-
A mobile genetic element acquired by horizontal transfer, which carries multiple genes that are typically involved in pathogenesis or symbiosis.
- Capnophilic
-
Bacterial species that grow best in the presence of elevated levels of carbon dioxide, relative to air.
- Twitching motility
-
A flagellum-independent motility on solid surfaces exhibited by some Gram-negative bacteria, mediated by retraction of type IV pili.
Rights and permissions
About this article
Cite this article
Tomich, M., Planet, P. & Figurski, D. The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol 5, 363–375 (2007). https://doi.org/10.1038/nrmicro1636
Issue date:
DOI: https://doi.org/10.1038/nrmicro1636
This article is cited by
-
Functional Genome Analysis of a Conditionally Pathogenic Rhizobacterial Strain, Pseudomonas putida AKMP7
Current Microbiology (2024)
-
Characterization of a bloom-associated alphaproteobacterial lineage, ‘Candidatus Phycosocius’: insights into freshwater algal-bacterial interactions
ISME Communications (2023)
-
Sinomonas cellulolyticus sp. nov., isolated from Loktak lake
Antonie van Leeuwenhoek (2023)
-
Transcriptome analysis revealed growth phase-associated changes of a centenarian-originated probiotic Bifidobacterium animalis subsp. lactis A6
BMC Microbiology (2022)
-
A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host
Nature Reviews Microbiology (2021)


