Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The contribution of immunology to the rational design of novel antibacterial vaccines

Key Points

  • Infections with bacterial pathogens remain a major health problem, causing more than 5 million deaths annually. The major culprits are pneumococci and meningococci in both the developing and developed world; agents of nosocomial infections, many of them being multidrug-resistant, mostly in the industrialized world; tuberculosis, which afflicts >85% of the population in developing countries and <15% in industrialized countries; and bacterial pathogens, which cause food-borne diseases that frequently have diarrhoeal sequelae (not covered in this article).

  • Vaccines are amongst the most successful measures of modern medicine — they save several million lives annually and have remarkable cost efficiency. Bacterial pathogens that are controlled successfully by vaccines include Clostridium tetani, Corynebacterium diphtheriae and Haemophilus influenzae b. Conjugate vaccines against meningococci and pneumococci are also available but need further improvements.

  • Vaccines achieve different outcomes. Most vaccines prevent disease outbreak rather than infection itself. Yet, in many cases, vaccinated individuals ultimately eradicate the pathogen. In more complex diseases, however, vaccinated individuals can only control infection if the bacterial load remains under the threshold for active disease. In such individuals, becoming immunocompromised can allow disease outbreak despite previous vaccination.

  • Rational vaccine design can benefit from recent insights into the immunology of host defences against infectious agents. This includes our better understanding of: how the innate immune response senses infectious agents; how it instructs the acquired immune response to develop the most appropriate defence mechanisms; the pathways through which antigens are presented to T cells; the cytokines and co-stimulatory cell-surface molecules which fine-tune T- and B-cell responses; the cytokines produced by T cells that help other immune cells to perform effector functions; and the mechanisms underlying memory for B cells and T cells. Although successful vaccines mostly rely on antibody production, the next generation of vaccines will need to exploit T cells to achieve the required efficacy.

  • Novel vaccination strategies can be roughly separated into three groups. First, vaccines based on antibody-mediated protection could lead to improved vaccines against pneumococci and meningococci as well as against nosocomial infections. Second, vaccines based on T-cell immunity will be needed against intracellular pathogens, notably Mycobacterium tuberculosis and Chlamydia trachomatis. Third, novel vaccines that prevent infection will be needed for diseases in which existing vaccines prevent disease outbreak by reducing the bacterial load under the threshold of active disease.

Abstract

In most cases, a successful vaccine must induce an immune response that is better than the response invoked by natural infection. Vaccines are still unavailable for several bacterial infections and vaccines to prevent such infections will be best developed on the basis of our increasing insights into the immune response. Knowledge of the signals that determine the best possible acquired immune response against a given pathogen — comprising a profound T- and B-cell memory response as well as long-lived plasma cells — will provide the scientific framework for the rational design of novel antibacterial vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The fathers of immunology and vaccinology.
Figure 2: Pattern-recognition receptors: TLRs and NODs.
Figure 3: Antigen presentation to different T-cell subsets: direct presentation and cross-priming.
Figure 4: Different subpopulations of CD4+ T cells.
Figure 5: Memory generation in cells of the immune system.

Similar content being viewed by others

References

  1. Behring, E. Die Blut Serum Therapie zur Diphterie Behandlung des Menschen. Berliner klin. Wochenschr. 31, 827 (1894).

    Google Scholar 

  2. WHO. World Health Report 2006: working together for health. WHO, Geneva (2006).

  3. Lowy, F. D. Staphylococcus aureus infections. N. Engl. J. Med. 339, 520–532 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Wright, G. D. The antibiotic resistome: the nexus of chemical and genetic diversity. Nature Rev. Microbiol. 5, 175–186 (2007).

    Article  CAS  Google Scholar 

  5. Peacock, S. J. in Bacteriology Vol. 2. (eds Borriello, S. P., Murray, P. R. & Funke, G.) 771–832 (Hodder Arnold, London, 2005).

    Google Scholar 

  6. Teixeira, L. M. & Facklam, R. R. in Bacteriology Vol. 2. (eds Borriello, S. P., Murray, P. R. & Funke, G.) 882–902 (Hodder Arnold, London, 2005).

    Google Scholar 

  7. Robinson, D. A. et al. Re-emergence of early pandemic Staphylococcus aureus as a community-acquired meticillin-resistant clone. Lancet 365, 1256–1258 (2005).

    Article  PubMed  Google Scholar 

  8. Palleroni, N. J. in Bacteriology Vol. 2. (eds Borriello, S. P., Murray, P. R. & Funke, G.) 1591–1606 (Hodder Arnold, London, 2005).

    Google Scholar 

  9. Levy, S. B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nature Med. 10, S122–S129 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Murray, P. R., Holmes, B. & Auken, H. M. in Bacteriology Vol. 2. (eds Borriello, S. P., Murray, P. R. & Funke, G.) 1474–1506 (Hodder Arnold, London, 2005).

    Google Scholar 

  11. Mims, C. et al. in Medical Microbiology 556–566 (Elsevier Mosby, Edinburgh, 2004).

    Google Scholar 

  12. Odeh, R. & Quinn, J. P. Problem pulmonary pathogens: Pseudomonas aeruginosa. Semin. Respir. Crit. Care Med. 21, 331–339 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Rappuoli, R., Miller, H. I. & Falkow, S. The intangible value of vaccination. Science 297, 937–939 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Manz, R. A., Hauser, A. E., Hiepe, F. & Radbruch, A. Maintenance of serum antibody levels. Annu. Rev. Immunol. 23, 367–386 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Casadevall, A. & Pirofski, L. A. A reappraisal of humoral immunity based on mechanisms of antibody-mediated protection against intracellular pathogens. Adv. Immunol. 91, 1–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Verez-Bencomo, V. et al. A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science 305, 522–525 (2004). Describes large-scale synthesis of a conjugate vaccine against Haemophilus influenzae type b and protection data from clinical trials.

    Article  CAS  PubMed  Google Scholar 

  17. Posfay-Barbe, K. M. & Wald, E. R. Pneumococcal vaccines: do they prevent infection and how? Curr. Opin. Infect. Dis. 17, 177–184 (2004).

    Article  PubMed  Google Scholar 

  18. Girard, M. P., Preziosi, M. P., Aguado, M. T. & Kieny, M. P. A review of vaccine research and development: meningococcal disease. Vaccine 24, 4692–4700 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Mowat, A. M. & Garside, P. in Immunology (eds Kaufmann, S. H. E. & Steward, M. W.) 389–402 (Hodder Arnold/ASM Press, London/Washington D.C., 2005).

    Google Scholar 

  20. Salerno-Goncalves, R. & Sztein, M. B. Cell-mediated immunity and the challenges for vaccine development. Trends Microbiol. 14, 536–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Zanetti, M. & Franchini, G. T cell memory and protective immunity by vaccination: is more better? Trends Immunol. 27, 511–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Pulendran, B. & Ahmed, R. Translating innate immunity into immunological memory: implications for vaccine development. Cell 124, 849–863 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Kalia, V., Sarkar, S., Gourley, T. S., Rouse, B. T. & Ahmed, R. Differentiation of memory B and T cells. Curr. Opin. Immunol. 18, 255–264 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Jiang, H. & Chess, L. Regulation of immune responses by T cells. N. Engl. J. Med. 354, 1166–1176 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Belkaid, Y. & Rouse, B. T. Natural regulatory T cells in infectious disease. Nature Immunol. 6, 353–360 (2005).

    Article  CAS  Google Scholar 

  27. Mora, J. R. & von Andrian, U. H. T-cell homing specificity and plasticity: new concepts and future challenges. Trends Immunol. 27, 235–243 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Neutra, M. R. & Kozlowski, P. A. Mucosal vaccines: the promise and the challenge. Nature Rev. Immunol. 6, 148–158 (2006).

    Article  CAS  Google Scholar 

  29. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Inohara, N., Chamaillard, M., McDonald, C. & Nunez, G. NOD-LRR proteins: role in host–microbial interactions and inflammatory disease. Annu. Rev. Biochem. 74, 355–383 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Chamaillard, M., Girardin, S. E., Viala, J. & Philpott, D. J. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell. Microbiol. 5, 581–592 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Meylan, E., Tschopp, J. & Karin, M. Intracellular pattern recognition receptors in the host response. Nature 442, 39–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Colonna, M., Pulendran, B. & Iwasaki, A. Dendritic cells at the host–pathogen interface. Nature Immunol. 7, 117–120 (2006).

    Article  CAS  Google Scholar 

  34. Jackson, D. C. et al. A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc. Natl Acad. Sci. USA 101, 15440–15445 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Unanue, E. R. in Immunology (eds Kaufmann, S. H. E. & Steward, M. W.) 375–388 (Hodder Arnold/ASM Press, London/Washington, D.C., 2005).

    Google Scholar 

  36. Yewdell, J. W. in Immunology (eds Kaufmann, S. H. E. & Steward, M. W.) 403–418 (Hodder Arnold/ASM Press, London/Washington D.C., 2005).

    Google Scholar 

  37. Kaufmann, S. H. E. in Fundamental Immunology, 5th edn (ed. Paul, W. E.) 1229–1261 (Lippincott-Raven, Philadelphia, New York, 2003).

    Google Scholar 

  38. Hayday, A. & Steele, C. in Immunology (eds Kaufmann, S. H. E. & Steward, M. W.) 435–448 (Hodder Arnold/ASM Press, London/Washington D.C., 2005).

    Google Scholar 

  39. Bonneville, M. in Immunology (eds Kaufmann, S. H. E. & Steward, M. W.) 449–470 (Hodder Arnold/ASM Press, London/Washington, D.C., 2005).

    Google Scholar 

  40. Romagnani, S. in Immunology (eds Kaufmann, S. H. E. & Steward, M. W.) 273–299 (Hodder Arnold/ASM Press, London/Washington, D.C., 2005).

    Google Scholar 

  41. Hsu, S.-C. in Immunology (eds Kaufmann, S. H. E. & Steward, M. W.) 419–434 (Hodder Arnold/ASM Press, London/Washington, D.C., 2005).

    Google Scholar 

  42. Winau, F., Hegasy, G., Kaufmann, S. H. E. & Schaible, U. E. No life without death —apoptosis as prerequisite for T cell activation. Apoptosis 10, 707–715 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Winau, F. et al. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity 24, 105–117 (2006). The authors present mechanisms underlying the processing and presentation of antigens within vesicles from cells that undergo apoptosis as a result of bacterial infection. The studies provide further evidence for the efficacy of cross-priming induced by vaccines.

    Article  CAS  PubMed  Google Scholar 

  44. Yrlid, U. & Wick, M. J. Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells. J. Exp. Med. 191, 613–624 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schaible, U. E. et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nature Med. 9, 1039–1046 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Colgan, J. & Rothman, P. All in the family: IL-27 suppression of TH17 cells. Nature Immunol. 7, 899–901 (2006).

    Article  CAS  Google Scholar 

  48. Tato, C. M., Laurence, A. & O'Shea, J. J. Helper T cell differentiation enters a new era: le roi est mort; vive le roi! J. Exp. Med. 203, 809–812 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dong, C. Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nature Rev. Immunol. 6, 329–333 (2006).

    Article  CAS  Google Scholar 

  50. Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M. & Murphy, K. M. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity. 24, 677–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Happel, K. I. et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J. Exp. Med. 202, 761–769 (2005). Provides the first evidence for a role of T H 17 cells in defence against the extracellular pathogen Klebsiella pneumoniae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Khader, S. A. et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nature Immunol. 8, 369–377 (2007). Establishes a role for T H 17 cells in TB by showing that T H 17 cells can guide T H 1 cells to the infected lung.

    Article  CAS  Google Scholar 

  54. Belkaid, Y., Piccirillo, C. A., Mendez, S., Shevach, E. M. & Sacks, D. L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002). An interesting study describing the role of T Reg cells in chronic infection. Notably, this paper reveals not only a detrimental but also a beneficial role for T Reg cells in chronic infections.

    Article  CAS  PubMed  Google Scholar 

  55. Ndejembi, M. P., Tang, A. L. & Farber, D. L. Reshaping the past: strategies for modulating T-cell memory immune responses. Clin. Immunol. 122, 1–12 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Greenwald, R. J., Freeman, G. J. & Sharpe, A. H. The B7 family revisited. Annu. Rev. Immunol. 23, 515–548 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006). Important study describing how IL-6 controls the generation of T Reg cells and of T H 17 cells stimulated by TGF-β. The presence of IL-6 favours development of T H 17 at the expense of T Reg cells.

    Article  CAS  PubMed  Google Scholar 

  58. Stumhofer, J. S. et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nature Immunol. 7, 937–945 (2006).

    Article  CAS  Google Scholar 

  59. Batten, M. et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nature Immunol. 7, 929–936 (2006). References 58 and 59 describe mechanisms by which IL-27 mediates immune suppression, namely, by blocking T H 17 cells.

    Article  CAS  Google Scholar 

  60. Racanelli, V., Behrens, S. E., Aliberti, J. & Rehermann, B. Dendritic cells transfected with cytopathic self-replicating RNA induce crosspriming of CD8+ T cells and antiviral immunity. Immunity 20, 47–58 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Murray, P. J., Aldovini, A. & Young, R. A. Manipulation and potentiation of antimycobacterial immunity using recombinant bacille Calmette–Guerin strains that secrete cytokines. Proc. Natl Acad. Sci. USA 93, 934–939 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shi, Y., Zheng, W. & Rock, K. L. Cell injury releases endogenous adjuvants that stimulate cytotoxic T cell responses. Proc. Natl Acad. Sci. USA 97, 14590–14595 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bouwer, H. G., Alberti-Segui, C., Montfort, M. J., Berkowitz, N. D. & Higgins, D. E. Directed antigen delivery as a vaccine strategy for an intracellular bacterial pathogen. Proc. Natl Acad. Sci. USA 103, 5102–5107 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Happel, K. I. et al. Pulmonary interleukin-23 gene delivery increases local T-cell immunity and controls growth of Mycobacterium tuberculosis in the lungs. Infect. Immun. 73, 5782–5788 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Antoniou, A. N., Blackwood, S. L., Mazzeo, D. & Watts, C. Control of antigen presentation by a single protease cleavage site. Immunity 12, 391–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Delamarre, L., Couture, R., Mellman, I. & Trombetta, E. S. Enhancing immunogenicity by limiting susceptibility to lysosomal proteolysis. J. Exp. Med. 203, 2049–2055 (2006). Describes the impact of lysosomal proteolysis on the immunogenicity of antigens, indicating novel strategies for enhancing vaccine efficacy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Foulds, K. E., Wu, C. Y. & Seder, R. A. TH1 memory: implications for vaccine development. Immunol. Rev. 211, 58–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Lefrancois, L. & Marzo, A. L. The descent of memory T-cell subsets. Nature Rev. Immunol. 6, 618–623 (2006).

    Article  CAS  Google Scholar 

  70. Swain, S. L., Hu, H. & Huston,G. Class II-independent generation of CD4 memory T cells from effectors. Science 286, 1381–1383 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Roberts, A. D., Ely, K. H. & Woodland, D. L. Differential contributions of central and effector memory T cells to recall responses. J. Exp. Med. 202, 123–133 (2005). Describes the contribution over time of effector memory and central memory T cells in pulmonary infection with viruses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Charo, I. F. & Ransohoff, R. M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610–621 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Dietrich, J. et al. Mucosal administration of Ag85B-ESAT-6 protects against infection with Mycobacterium tuberculosis and boosts prior bacillus Calmette–Guerin immunity. J. Immunol. 177, 6353–6360 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Mollenkopf, H. J. et al. Application of mycobacterial proteomics to vaccine design: improved protection by Mycobacterium bovis BCG prime-Rv3407 DNA boost vaccination against tuberculosis. Infect. Immun. 72, 6471–6479 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Goonetilleke, N. P. et al. Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette–Guerin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J. Immunol. 171, 1602–1609 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Kaufmann, S. H. E. & McMichael, A. J. Annulling a dangerous liaison: vaccination strategies against AIDS and tuberculosis. Nature Med. 11, S33–S44 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Marrack, P. & Kappler, J. Control of T cell viability. Annu. Rev. Immunol. 22, 765–787 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Tang, Q. et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J. Immunol. 171, 3348–3352 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Chambers, C. A., Sullivan, T. J. & Allison, J. P. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 7, 885–895 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Coyle, A. J. et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13, 95–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Yoshinaga, S. K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Mittrucker, H. W. et al. Inducible costimulator protein controls the protective T cell response against Listeria monocytogenes. J. Immunol. 169, 5813–5817 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sharpe, A. H., Wherry, E. J., Ahmed, R. & Freeman, G. J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nature Immunol. 8, 239–245 (2007).

    Article  CAS  Google Scholar 

  87. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nature Immunol. 2, 261–268 (2001).

    Article  CAS  Google Scholar 

  88. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brown, J. A. et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J. Immunol. 170, 1257–1266 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. MacLeod, M. et al. CD4 memory T cells survive and proliferate but fail to differentiate in the absence of CD40. J. Exp. Med. 203, 897–906 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cayabyab, M., Phillips, J. H. & Lanier, L. L. CD40 preferentially costimulates activation of CD4+ T lymphocytes. J. Immunol. 152, 1523–1531 (1994).

    CAS  PubMed  Google Scholar 

  92. McHeyzer-Williams, L. J., Malherbe, L. P. & McHeyzer-Williams, M. G. Helper T cell-regulated B cell immunity. Curr. Top. Microbiol. Immunol. 311, 59–83 (2006).

    CAS  PubMed  Google Scholar 

  93. Tarlinton, D. B-cell memory: are subsets necessary? Nature Rev. Immunol. 6, 785–790 (2006).

    Article  CAS  Google Scholar 

  94. Zinkernagel, R. M. & Hengartner, H. Protective 'immunity' by pre-existent neutralizing antibody titers and preactivated T cells but not by so-called 'immunological memory'. Immunol. Rev. 211, 310–319 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Lanzavecchia, A. et al. Understanding and making use of human memory B cells. Immunol. Rev. 211, 303–309 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cushley, W. & Borland, G. in Immunology (eds Kaufmann, S. H. E. & Steward, M. W.) 303–338 (Hodder Arnold/ASM Press, London/Washington, D.C., 2005).

    Google Scholar 

  97. Baumgarth, N., Tung, J. W. & Herzenberg, L. A. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin. Immunopathol. 26, 347–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. McHeyzer-Williams, L.J., Cool, M. & McHeyzer-Williams, M. G. Antigen-specific B cell memory: expression and replenishment of a novel B220 memory B cell compartment. J. Exp. Med. 191, 1149–1166 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Ferguson, S. E., Han, S., Kelsoe, G. & Thompson, C. B. CD28 is required for germinal center formation. J. Immunol. 156, 4576–4581 (1996).

    CAS  PubMed  Google Scholar 

  101. Maruyama, M., Lam, K. P. & Rajewsky, K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407, 636–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Manz, R. A., Thiel, A. & Radbruch, A. Lifetime of plasma cells in the bone marrow. Nature 388, 133–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Slifka, M. K., Antia, R., Whitmire, J. K. & Ahmed, R. Humoral immunity due to long-lived plasma cells. Immunity 8, 363–372 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. O'Connor, B. P., Cascalho, M. & Noelle, R. J. Short-lived and long-lived bone marrow plasma cells are derived from a novel precursor population. J. Exp. Med. 195, 737–745 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pasare, C. & Medzhitov, R. Control of B-cell responses by Toll-like receptors. Nature 438, 364–368 (2005). Characterizes the role of TLRs in B-cell activation in T-cell antigen-specific antibody responses.

    Article  CAS  PubMed  Google Scholar 

  106. Bernasconi, N. L., Traggiai, E. & Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199–2202 (2002). Explains how antibody production is maintained over long periods of time through polyclonal activation.

    Article  CAS  PubMed  Google Scholar 

  107. Pizza, M. et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Kyaw, M. H. et al. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N. Engl. J. Med. 354, 1455–1463 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Johri, A. K. et al. Group B Streptococcus: global incidence and vaccine development. Nature Rev. Microbiol. 4, 932–942 (2006).

    Article  CAS  Google Scholar 

  110. Projan, S. J., Nesin, M. & Dunman, P. M. Staphylococcal vaccines and immunotherapy: to dream the impossible dream? Curr. Opin. Pharmacol. 6, 473–479 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Gotz, F. Staphylococci in colonization and disease: prospective targets for drugs and vaccines. Curr. Opin. Microbiol. 7, 477–487 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. McMillan, D. J. & Chhatwal, G. S. Prospects for a group A streptococcal vaccine. Curr. Opin. Mol. Ther. 7, 11–16 (2005).

    CAS  PubMed  Google Scholar 

  113. Olive, C. Progress in M-protein-based subunit vaccines to prevent rheumatic fever and rheumatic heart disease. Curr. Opin. Mol. Ther. 9, 25–34 (2007).

    CAS  PubMed  Google Scholar 

  114. Kotloff, K.L. et al. Safety and immunogenicity of a recombinant multivalent group A streptococcal vaccine in healthy adults: phase 1 trial. JAMA 292, 709–715 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Maione, D. et al. Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science 309, 148–150 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mora, M., Donati, C., Medini, D., Covacci, A. & Rappuoli, R. Microbial genomes and vaccine design: refinements to the classical reverse vaccinology approach. Curr. Opin. Microbiol. 9, 532–536 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Wizemann, T. M. et al. Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect. Immun. 69, 1593–1598 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. De Groot, A. S. Immunomics: discovering new targets for vaccines and therapeutics. Drug Discov. Today 11, 203–209 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Giefing, C., Nagy, E. & von Gabain, A. in Pharmaceutical Biotechnology (eds Guzman, C. A. & Feuerstein, G.) in press (Landes Bioscience, Austin, Texas).

  120. Etz, H. et al. Identification of in vivo expressed vaccine candidate antigens from Staphylococcus aureus. Proc. Natl Acad. Sci. USA 99, 6573–6578 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kuklin, N. A. et al. A novel Staphylococcus aureus vaccine: iron surface determinant B induces rapid antibody responses in rhesus macaques and specific increased survival in a murine S. aureus sepsis model. Infect. Immun. 74, 2215–2223 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kaufmann, S. H. E. Recent findings in immunology give tuberculosis vaccines a new boost. Trends Immunol. 26, 660–667 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Kaufmann, S. H. E. Envisioning future strategies for vaccination against tuberculosis. Nature Rev. Immunol. 6, 699–704 (2006).

    Article  CAS  Google Scholar 

  124. Young, D. & Dye, C. The development and impact of tuberculosis vaccines. Cell 124, 683–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Andersen, P. & Doherty, T. M. The success and failure of BCG — implications for a novel tuberculosis vaccine. Nature Rev. Microbiol. 3, 656–662 (2005).

    Article  CAS  Google Scholar 

  126. Brockstedt, D. G. et al. Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity. Nature Med. 11, 853–860 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Kursar, M. et al. Cutting edge: regulatory T cells prevent efficient clearance of Mycobacterium tuberculosis. J. Immunol. 178, 2661–2665 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Brunham, R. C. & Rey-Ladino, J. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nature Rev. Immunol. 5, 149–161 (2005).

    Article  CAS  Google Scholar 

  129. Aebischer, T., Schmitt, A., Walduck, A. K. & Meyer, T. F. Helicobacter pylori vaccine development: facing the challenge. Int. J. Med. Microbiol. 295, 343–353 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Suerbaum, S. & Michetti, P. Helicobacter pylori infection. N. Engl. J. Med. 347, 1175–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Baker, M. Anti-infective antibodies: finding the path forward. Nature Biotechnol. 24, 1491–1493 (2006).

    Article  CAS  Google Scholar 

  132. Vitetta, E. S. & Ghetie, V. F. Considering therapeutic antibodies. Science 313, 308–309 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Kim, C. & Kaufmann, S. H. Defensin: a multifunctional molecule lives up to its versatile name. Trends Microbiol. 14, 428–431 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Kim, C. et al. Human α-defensins neutralize anthrax lethal toxin and protect against its fatal consequences. Proc. Natl Acad. Sci. USA 102, 4830–4835 (2005). Describes a novel function of human α-defensins, namely, their capacity to neutralize anthrax lethal toxin and, therefore, provides evidence for a novel intervention strategy against anthrax.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Killian, M. in Bacteriology Vol. 2. (eds Borriello, S. P., Murray, P. R. & Funke, G.) 833–881 (Hodder Arnold, London, 2005).

    Google Scholar 

  136. Sinha, A., Levine, O., Knoll, M. D., Muhib, F. & Lieu, T. A. Cost-effectiveness of pneumococcal conjugate vaccination in the prevention of child mortality: an international economic analysis. Lancet 369, 389–396 (2007).

    Article  PubMed  Google Scholar 

  137. Mietzner, T. A. & Morse, S. A. in Bacteriology Vol. 2. (eds Borriello, S. P., Murray, P. R. & Funke, G.) 1270–1300 (Hodder Arnold, London, 2005).

    Google Scholar 

  138. Smith, A. et al. Invasive group A streptococcal disease: should close contacts routinely receive antibiotic prophylaxis? Lancet Infect. Dis. 5, 494–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Bisno, A. L., Brito, M. O. & Collins, C. M. Molecular basis of group A streptococcal virulence. Lancet Infect. Dis. 3, 191–200 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Areschoug, T., Carlsson, F., Stalhammar-Carlemalm, M. & Lindahl, G. Host–pathogen interactions in Streptococcus pyogenes infections, with special reference to puerperal fever and a comment on vaccine development. Vaccine 22 (Suppl 1), S9–S14 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Pfyffer, G. E. & Vincent, V. in Bacteriology Vol. 2. (eds Borriello, S. P., Murray, P. R. & Funke, G.) 1181–1235 (Hodder Arnold, London, 2005).

    Google Scholar 

  142. Märdh, P.-A. in Bacteriology Vol. 2. (eds Borriello, S. P., Murray, P. R. & Funke, G.) 2006–2025 (Hodder Arnold, London, 2005).

    Google Scholar 

  143. Owen, R. J. in Bacteriology Vol. 2. (eds Borriello, S. P., Murray, P. R. & Funke, G.) 1563–1590 (Hodder Arnold, London, 2005).

    Google Scholar 

Download references

Acknowledgements

I am grateful to S. Sibaei and M.L. Grossman for excellent support, D. Schad for graphical work and S. Reece for critically reading the manuscript. I also thank A. von Gabain for sharing unpublished work. Studies on vaccine development have been carried out with support from the following: The European Union Framework Program 6 Projects, Design and Testing of Vaccine Candidates Against Tuberculosis (TBVAC) and Mucosal Vaccines for Poverty-related Diseases (MUVAPRED); the Bundesministerium für Bildung und Forschung KompetenzNetzwerk PathoGenoMikPlus, KompetenzNetzwerk-RNA Technologie, and National Genome Research Network 2 (Germany); DFG Priority Programme Novel Vaccination Strategies (Germany); Bill & Melinda Gates Foundation Grand Challenges in Global Health (US). Studies on the history of vaccinology have been generously supported by Fonds der Chemischen Industrie (Germany).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Stefan Kaufmann is a member of the Scientific Advisory Board of Intercell AG, Austria, and VPM (Vakzine Projekt Management) GmbH, Germany.

Related links

Related links

DATABASES

Entrez Genome Project

Staphylococcus aureus

Streptococcus pneumoniae

Neisseria meningitidis

Mycobacterium tuberculosis

Chlamydia trachomatis

Helicobacter pylori

FURTHER INFORMATION

Stefan H. E. Kaufmann's homepage

Glossary

Passive vaccination

The provision of protective immunity by the transfer of immunoglobulins or T cells.

Plasma cell

A non-dividing, terminally differentiated, immunoglobulin-secreting cell of the B-cell lineage.

Regulatory T cell

(TReg cell). A population of CD4+ T cells that naturally express high levels of CD25 (the interleukin-2 receptor α-chain) and the transcription factor forkhead box P3 (Foxp3), and that have suppressive regulatory activity towards effector T cells and other immune cells.

Pattern-recognition receptor

(PRR). A host receptor (such as Toll-like receptors (TLRs) or NOD-like receptors (NLRs)) that can sense pathogen-associated molecular patterns and initiate signalling cascades that lead to an innate immune response. These can be membrane-bound (such as TLRs) or soluble cytoplasmic receptors (such as NLRs).

Dendritic cell

(DC). 'Professional' antigen-presenting cells that are found in the T-cell areas of lymphoid tissues and as minor cellular components in most tissues. They have a branched or dendritic morphology and are the most potent stimulators of T-cell responses.

CD4+ T cell

A subpopulation of T cells that express the CD4 receptor. These cells aid in immune responses and are therefore referred to as T helper cells.

CD8+ T cell

A subpopulation of T cells that express the CD8 receptor. CD8+ cells recognize antigens that are presented on the surface of host cells by MHC class I molecules, leading to their destruction, and are therefore also known as cytotoxic T lymphocytes (CTLs).

γδ T cell

A minor population of T cells that express the γδ T-cell receptor, and that are more abundant in epithelial-rich tissues such as skin and gut and reproductive tracts. Like NKT cells, γδ T cells can be cytolytic and produce high levels of cytokines and chemokines.

Perforin

A calcium-sensitive membrane-lytic protein that is found in cytoplasmic granules of cytotoxic T lymphocytes and natural killer cells.

Granzyme

A family of serine proteinases that are found primarily in the cytoplasmic granules of cytotoxic T lymphocytes and natural killer cells. These proteinases enter target cells through perforin pores, then cleave and activate intracellular caspases and induce apoptosis of target cells.

Phagosome

The functional definition of the organelle in which bacteria are internalized. Phagosomal and endosomal pathways undergo interconnected maturation and merge before fusion with lysosomes. Some bacterial pathogens inhibit the acidification of the phagosome and its fusion with lysosomes.

T helper 1 cell

(TH1 cell). A type of activated TH cell that promotes responses associated with the production of a particular set of cytokines, including interleukin (IL)-2 and interferon (IFN)-γ, the main function of which is to stimulate phagocytosis-mediated defences against intracellular pathogens.

T helper 2 cell

(TH2 cell). A type of activated TH cell that participates in phagocytosis-independent responses and downregulates pro-inflammatory responses that are induced by TH1 cells. TH2 cells secrete interleukin (IL)-4 and IL-5.

Central memory T cell

A memory T cell that lacks immediate effector function but can mediate rapid recall responses and has the capacity to circulate from the blood to the secondary lymphoid organs. Rapidly develops the phenotype and function of effector cells after restimulation with antigen.

Effector memory T cell

A memory T cell that homes to inflamed tissues. Can exert immediate effector functions without the need for further differentiation.

High endothelial venule

(HEV). A specialized venule with a cuboidal endothelial lining that occurs in peripheral lymph nodes and Peyer's patches. HEVs allow continuous transmigration of lymphocytes as a consequence of the constitutive expression of adhesion molecules and chemokines at their luminal surface.

Heterologous prime–boost strategies

When a single application of a vaccine is insufficient, repeated vaccinations are carried out using different vaccine preparations, allowing the sequential stimulation of a better immune response.

Germinal centre

A highly specialized and dynamic microenvironment in the follicles of secondary lymphoid tissues (spleen, Peyer's patches and lymph nodes) that gives rise to secondary B-cell follicles during an immune response. The main site of B-cell maturation, leading to the generation of memory B cells and plasma cells that produce high-affinity antibody.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufmann, S. The contribution of immunology to the rational design of novel antibacterial vaccines. Nat Rev Microbiol 5, 491–504 (2007). https://doi.org/10.1038/nrmicro1688

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro1688

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing