Key Points
-
RNA pseudoknots are structural motifs in RNA that are increasingly recognized in viral and cellular RNAs. They have been shown to have a various roles in virus and cellular gene expression.
-
Pseudoknots are formed upon base pairing of a single-stranded region of RNA in the loop of a hairpin to a stretch of complementary nucleotides elsewhere in the RNA chain. This simple folding strategy can generate a large number of stable three-dimensional folds, which display a diverse range of highly specific functions.
-
Pseudoknot function is frequently associated with interactions with ribosomes. The inclusion of pseudoknots in an mRNA can thus confer unusual translational properties.
-
Many RNA viruses use pseudoknots in the control of viral RNA translation, replication and the switch between the two processes. Some satellite viruses encode ribozymes with active sites that are folded by a pseudoknot.
-
In cellular RNAs, pseudoknots are associated with all aspects of mRNA function and also ribosome function, as ribosomal RNAs contain numerous pseudoknots. Other essential cellular pseudoknots have been described in telomerase RNA and transfer messenger RNA.
-
Future research into pseudoknots will focus on structure–function relationships and bioinformatics identification of pseudoknots in genomes. The use of pseudoknots in antiviral applications could also become more widespread.
Abstract
RNA pseudoknots are structural elements found in almost all classes of RNA. First recognized in the genomes of plant viruses, they are now established as a widespread motif with diverse functions in various biological processes. This Review focuses on viral pseudoknots and their role in virus gene expression and genome replication. Although emphasis is placed on those well defined pseudoknots that are involved in unusual mechanisms of viral translational initiation and elongation, the broader roles of pseudoknots are also discussed, including comparisons with relevant cellular counterparts. The relationship between RNA pseudoknot structure and function is also addressed.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Rietveld, K., Van Poelgeest, R., Pleij, C. W., Van Boom, J. H. & Bosch, L. The tRNA-like structure at the 3′ terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA. Nucleic Acids Res. 10, 1929–1946 (1982). The first experimental identification of an RNA pseudoknot.
Rietveld, K., Pleij, C. W. & Bosch, L. Three-dimensional models of the tRNA-like 3′ termini of some plant viral RNAs. EMBO J. 2, 1079–1085 (1983).
Pleij, C. W., Rietveld, K. & Bosch, L. A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res. 13, 1717–1731 (1985). A fundamental paper describing the pseudoknot building principle, setting the rules for pseudoknot formation and providing the first examples.
Pleij, C. W. Pseudoknots: a new motif in the RNA game. Trends Biochem. Sci. 15, 143–147 (1990).
ten Dam, E., Pleij, K. & Draper, D. Structural and functional aspects of RNA pseudoknots. Biochemistry 31, 11665–11676 (1992).
Hilbers, C. W., Michiels, P. J. & Heus, H. A. New developments in structure determination of pseudoknots. Biopolymers 48, 137–153 (1998).
Giedroc, D. P., Theimer, C. A. & Nixon, P. L. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. J. Mol. Biol. 298, 167–185 (2000).
Fechter, P., Rudinger-Thirion, J., Florentz, C. & Giege, R. Novel features in the tRNA-like world of plant viral RNAs. Cell. Mol. Life Sci. 58, 1547–1561 (2001).
Been, M. D. Molecular biology. Versatility of self-cleaving ribozymes. Science 313, 1745–1747 (2006).
Theimer, C. A. & Feigon, J. Structure and function of telomerase RNA. Curr. Opin. Struct. Biol. 16, 307–318 (2006).
Hellen, C. U. Bypassing translation initiation. Structure 15, 4–6 (2007).
Wang, C., Le, S. Y., Ali, N. & Siddiqui, A. An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5′ noncoding region. RNA 1, 526–537 (1995).
Thiel, V. et al. Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 84, 2305–2315 (2003).
ten Dam, E. B., Pleij, C. W. & Bosch, L. RNA pseudoknots: translational frameshifting and readthrough on viral RNAs. Virus Genes 4, 121–136 (1990). The first detailed description of a large number of pseudoknots that act during the elongation phase of viral protein synthesis.
Baril, M., Dulude, D., Steinberg, S. V. & Brakier-Gingras, L. The frameshift stimulatory signal of human immunodeficiency virus type 1 group O is a pseudoknot. J. Mol. Biol. 331, 571–583 (2003).
McPheeters, D. S., Stormo, G. D. & Gold, L. Autogenous regulatory site on the bacteriophage T4 gene 32 messenger RNA. J. Mol. Biol. 201, 517–535 (1988). The first description of an autoregulatory viral pseudoknot that is bound specifically by a viral protein.
Taylor, J. M. Structure and replication of hepatitis delta virus RNA. Curr. Top. Microbiol. Immunol. 307, 1–23 (2006).
Westhof, E. & Jaeger, L. RNA pseudoknots. Curr. Opin. Struct. Biol. 2, 327–333 (1992).
van Batenburg, F. H., Gultyaev, A. P. & Pleij, C. W. PseudoBase: structural information on RNA pseudoknots. Nucleic Acids Res. 29, 194–195 (2001). A valuable resource of RNA pseudoknot information.
Kim, N., Shiffeldrim, N., Gan, H. H. & Schlick, T. Candidates for novel RNA topologies. J. Mol. Biol. 341, 1129–1144 (2004).
Kolk, M. H. et al. NMR structure of a classical pseudoknot: interplay of single- and double-stranded RNA. Science 280, 434–438 (1998). This work revealed the potential for pseudoknot loop–helix interactions.
Mans, R. M., Pleij, C. W. & Bosch, L. tRNA-like structures. Structure, function and evolutionary significance. Eur. J. Biochem. 201, 303–324 (1991).
Deiman, B. A. L. M. & Pleij, C. W. A. Pseudoknots: a vital feature in viral RNA. Sem. Virol. 8, 166–175 (1997).
Kim, Y. G., Su, L., Maas, S., O'Neill, A. & Rich, A. Specific mutations in a viral RNA pseudoknot drastically change ribosomal frameshifting efficiency. Proc. Natl Acad. Sci. USA 96, 14234–14239 (1999).
Theimer, C. A., Blois, C. A. & Feigon, J. Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol. Cell 17, 671–682 (2005).
Schuler, M. et al. Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nature Struct. Mol. Biol. 13, 1092–1096 (2006).
Pfingsten, J. S., Costantino, D. A. & Kieft, J. S. Structural basis for ribosome recruitment and manipulation by a viral IRES RNA. Science 314, 1450–1454 (2006). References 26 and 27, published simultaneously, provided a wealth of information on pseudoknot folding in large RNAs and how structural features that interact with ribosomes can be generated by such folding strategies.
Marintchev, A. & Wagner, G. Translation initiation: structures, mechanisms and evolution. Q. Rev. Biophys. 37, 197–284 (2004).
Wells, S. E., Hillner, P. E., Vale, R. D. & Sachs, A. B. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2, 135–140 (1998).
Jang, S. K. Internal initiation: IRES elements of picornaviruses and hepatitis C virus. Virus Res. 119, 2–15 (2006).
Dreher, T. W. & Miller, W. A. Translational control in positive strand RNA plant viruses. Virology 344, 185–197 (2006).
Fraser, C. S. & Doudna, J. A. Structural and mechanistic insights into hepatitis C viral translation initiation. Nature Rev. Microbiol. 5, 29–38 (2007).
Kieft, J. S., Zhou, K., Jubin, R. & Doudna, J. A. Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7, 194–206 (2001).
Otto, G. A. & Puglisi, J. D. The pathway of HCV IRES-mediated translation initiation. Cell 119, 369–380 (2004).
Spahn, C. M. et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Science 291, 1959–1962 (2001).
Boehringer, D., Thermann, R., Ostareck-Lederer, A., Lewis, J. D. & Stark, H. Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. Structure 13, 1695–1706 (2005).
Laletina, E. et al. Proteins surrounding hairpin IIIe of the hepatitis C virus internal ribosome entry site on the human 40S ribosomal subunit. Nucleic Acids Res. 34, 2027–2036 (2006).
Fukushi, S. et al. Ribosomal protein S5 interacts with the internal ribosomal entry site of hepatitis C virus. J. Biol. Chem. 276, 20824–20826 (2001).
Siridechadilok, B., Fraser, C. S., Hall, R. J., Doudna, J. A. & Nogales, E. Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310, 1513–1515 (2005).
Wilson, J. E., Pestova, T. V., Hellen, C. U. & Sarnow, P. Initiation of protein synthesis from the A site of the ribosome. Cell 102, 511–520 (2000).
Pfingsten, J. S., Costantino, D. A. & Kieft, J. S. Conservation and diversity among the three-dimensional folds of the dicistroviridae intergenic region IRESes. J. Mol. Biol. 370, 856–869 (2007).
Spahn, C. M. et al. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Cell 118, 465–475 (2004).
Pestova, T. V. & Hellen, C. U. Translation elongation after assembly of ribosomes on the cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev. 17, 181–186 (2003).
Jan, E., Kinzy, T. G. & Sarnow, P. Divergent tRNA-like element supports initiation, elongation, and termination of protein biosynthesis. Proc. Natl Acad. Sci. USA 100, 15410–15415 (2003).
Kanamori, Y. & Nakashima, N. A tertiary structure model of the internal ribosome entry site (IRES) for methionine-independent initiation of translation. RNA 7, 266–274 (2001). A mutational and phylogenetic analysis of an IGR IRES that led to the realization that the IRES was composed of three pseudoknots.
Jan, E. & Sarnow, P. Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. J. Mol. Biol. 324, 889–902 (2002).
Yusupov, M. M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).
Nishiyama, T. et al. Structural elements in the internal ribosome entry site of Plautia stali intestine virus responsible for binding with ribosomes. Nucleic Acids Res. 31, 2434–2442 (2003).
Yamamoto, H., Nakashima, N., Ikeda, Y. & Uchiumi, T. Binding mode of the first aminoacyl-tRNA in translation initiation mediated by Plautia stali intestine virus internal ribosome entry site. J. Biol. Chem. 282, 7770–7776 (2007).
Powers, T. & Noller, H. F. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 10, 2203–2214 (1991).
Batey, R. T., Rambo, R. P. & Doudna, J. A. Tertiary motifs in RNA structure and folding. Angew Chem. Int. Ed. Engl. 38, 2326–2343 (1999).
Shamoo, Y., Tam, A., Konigsberg, W. H. & Williams, K. R. Translational repression by the bacteriophage T4 gene 32 protein involves specific recognition of an RNA pseudoknot structure. J. Mol. Biol. 232, 89–104 (1993).
Holland, J. A., Hansen, M. R., Du, Z. & Hoffman, D. W. An examination of coaxial stacking of helical stems in a pseudoknot motif: the gene 32 messenger RNA pseudoknot of bacteriophage T2. RNA 5, 257–271 (1999).
Tang, C. K. & Draper, D. E. Unusual mRNA pseudoknot structure is recognized by a protein translational repressor. Cell 57, 531–536 (1989).
Schlax, P. J., Xavier, K. A., Gluick, T. C. & Draper, D. E. Translational repression of the Escherichia coli α operon mRNA: importance of an mRNA conformational switch and a ternary entrapment complex. J. Biol. Chem. 276, 38494–38501 (2001).
Mathy, N. et al. Specific recognition of rpsO mRNA and 16S rRNA by Escherichia coli ribosomal protein S15 relies on both mimicry and site differentiation. Mol. Microbiol. 52, 661–675 (2004).
Brierley, I. & Pennell, S. Structure and function of the stimulatory RNAs involved in programmed eukaryotic-1 ribosomal frameshifting. Cold Spring Harb. Symp. Quant. Biol. 66, 233–248 (2001).
Brierley, I. & Dos Ramos, F. J. Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Virus Res. 119, 29–42 (2006)
Brierley, I. Ribosomal frameshifting viral RNAs. J. Gen. Virol. 76, 1885–1892 (1995).
Shehu-Xhilaga, M., Crowe, S. M. & Mak, J. Maintenance of the Gag/Gag–Pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. J. Virol. 75, 1834–1841 (2001).
Dinman, J. D. & Wickner, R. B. Ribosomal frameshifting efficiency and Gag/Gag–Pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J. Virol. 66, 3669–3676 (1992).
Zhai, Y. et al. Insights into SARS-CoV transcription and replication from the structure of the nsp7–nsp8 hexadecamer. Nature Struct. Mol. Biol. 12, 980–986 (2005).
Imbert, I. et al. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 25, 4933–4942 (2006).
Baranov, P. V. et al. Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology 332, 498–510 (2005).
Plant, E. P. et al. A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal. PLoS Biol. 3, e172 (2005).
Brierley, I., Digard, P. & Inglis, S. C. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57, 537–547 (1989). The first experimental verification of a role for pseudoknots in translational frameshifting.
Yusupova, G. Z., Yusupov, M. M., Cate, J. H. & Noller, H. F. The path of messenger RNA through the ribosome. Cell 106, 233–241 (2001).
Plant, E. P. et al. The 9-A solution: how mRNA pseudoknots promote efficient programmed-1 ribosomal frameshifting. RNA 9, 168–174 (2003).
Plant, E. P. & Dinman, J. D. Torsional restraint: a new twist on frameshifting pseudoknots. Nucleic Acids Res. 33, 1825–1833 (2005).
Takyar, S., Hickerson, R. P. & Noller, H. F. mRNA helicase activity of the ribosome. Cell 120, 49–58 (2005).
Namy, O., Moran, S. J., Stuart, D. I., Gilbert, R. J. & Brierley, I. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 441, 244–247 (2006). This cryo-EM study was the first experimental visualization of how a pseudoknot can compromise translational elongation.
Nilsson, J., Sengupta, J., Frank, J. & Nissen, P. Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome. EMBO Rep. 5, 1137–1141 (2004).
Su, L., Chen, L., Egli, M., Berger, J. M. & Rich, A. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot. Nature Struct. Biol. 6, 285–292 (1999). The first crystal structure of a frameshift-promoting pseudoknot, yielding a wealth of information about pseudoknot folding.
Michiels, P. J. et al. Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting. J. Mol. Biol. 310, 1109–1123 (2001).
Cornish, P. V., Stammler, S. N. & Giedroc, D. P. The global structures of a wild-type and poorly functional plant luteoviral mRNA pseudoknot are essentially identical. RNA 12, 1959–1969 (2006).
Shen, L. X. & Tinoco, I. Jr. The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus. J. Mol. Biol. 247, 963–978 (1995).
Wang, Y. et al. Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral Gag–Pro frameshift site. RNA 8, 981–996 (2002).
Cornish, P. V., Hennig, M. & Giedroc, D. P. A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated-1 ribosomal frameshifting. Proc. Natl Acad. Sci. USA 102, 12694–12699 (2005).
Hansen, T. M., Reihani, S. N., Oddershede, L. B. & Sorensen, M. A. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting. Proc. Natl Acad. Sci. USA 104, 5830–5835 (2007).
Shigemoto, K. et al. Identification and characterisation of a developmentally regulated mammalian gene that utilises −1 programmed ribosomal frameshifting. Nucleic Acids Res. 29, 4079–4088 (2001).
Manktelow, E., Shigemoto, K. & Brierley, I. Characterization of the frameshift signal of Edr, a mammalian example of programmed −1 ribosomal frameshifting. Nucleic Acids Res. 33, 1553–1563 (2005).
Wills, N. M., Moore, B., Hammer, A., Gesteland, R. F. & Atkins, J. F. A functional-1 ribosomal frameshift signal in the human paraneoplastic Ma3 gene. J. Biol. Chem. 281, 7082–7088 (2006).
Jacobs, J. L., Belew, A. T., Rakauskaite, R. & Dinman, J. D. Identification of functional, endogenous programmed-1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae. Nucleic Acids Res. 35, 165–174 (2007).
Nonin-Lecomte, S., Felden, B. & Dardel, F. NMR structure of the Aquifex aeolicus tmRNA pseudoknot PK1: new insights into the recoding event of the ribosomal trans-translation. Nucleic Acids Res. 34, 1847–1853 (2006).
Kaur, S., Gillet, R., Li, W., Gursky, R. & Frank, J. Cryo-EM visualization of transfer messenger RNA with two SmpBs in a stalled ribosome. Proc. Natl Acad. Sci. USA 103, 16484–16489 (2006).
Moore, S. D. & Sauer, R. T. The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem. 76, 101–124 (2007).
Ivanov, I. P. & Atkins, J. F. Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res. 35, 1842–1858 (2007).
Zimmer, M., Sattelberger, E., Inman R. B., Calendar R. & Loessner, M. J. Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed +1 translational frameshifting in structural protein synthesis. Mol. Microbiol. 50, 303–317 (2003).
Wills, N. M., Gesteland, R. F. & Atkins, J. F. Evidence that a downstream pseudoknot is required for translational read-through of the Moloney murine leukemia virus gag stop codon. Proc. Natl Acad. Sci. USA 88, 6991–6995 (1991).
Feng, Y. X., Yuan, H., Rein, A. & Levin, J. G. Bipartite signal for read-through suppression in murine leukemia virus mRNA: an eight-nucleotide purine-rich sequence immediately downstream of the gag termination codon followed by an RNA pseudoknot. J. Virol. 66, 5127–5132 (1992).
Wills, N. M., Gesteland, R. F. & Atkins, J. F. Pseudoknot-dependent read-through of retroviral gag termination codons: importance of sequences in the spacer and loop 2. EMBO J. 13, 4137–4144 (1994).
Alam, S. L., Wills, N. M., Ingram, J. A., Atkins, J. F. & Gesteland, R. F. Structural studies of the RNA pseudoknot required for readthrough of the gag-termination codon of murine leukemia virus. J. Mol. Biol. 288, 837–852 (1999).
Gluick, T. C., Wills, N. M., Gesteland, R. F. & Draper, D. E. Folding of an mRNA pseudoknot required for stop codon readthrough: effects of mono- and divalent ions on stability. Biochemistry 36, 16173–16186 (1997).
Orlova, M., Yueh, A., Leung, J. & Goff, S. P. Reverse transcriptase of Moloney murine leukemia virus binds to eukaryotic release factor 1 to modulate suppression of translational termination. Cell 115, 319–331 (2003).
Pinck, M., Yot, P., Chapeville, F. & Duranton, H. M. Enzymatic binding of valine to the 3′ end of TYMV-RNA. Nature 226, 954–956 (1970).
Giege, R. Interplay of tRNA-like structures from plant viral RNAs with partners of the translation and replication machineries. Proc. Natl Acad. Sci. USA 93, 12078–12081 (1996).
Matsuda, D. & Dreher, T. W. The tRNA-like structure of turnip yellow mosaic virus RNA is a 3′-translational enhancer. Virology 321, 36–46 (2004). A detailed investigation of the role of the TYMV 3′ UTR in protein synthesis.
Barends, S., Bink, H. H., van den Worm, S. H., Pleij, C. W. & Kraal, B. Entrapping ribosomes for viral translation: tRNA mimicry as a molecular Trojan horse. Cell 112, 123–129 (2003).
Matsuda, D. & Dreher, T. W. Cap- and initiator tRNA-dependent initiation of TYMV polyprotein synthesis by ribosomes: evaluation of the Trojan horse model for TYMV RNA translation. RNA 13, 129–137 (2007).
Kolakofsky, D. & Weissmann, C. Possible mechanism for transition of viral RNA from polysome to replication complex. Nature New Biol. 231, 42–46 (1971).
Gamarnik, A. V. & Andino, R. Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev. 12, 2293–2304 (1998).
Barton, D. J., Morasco, B. J. & Flanegan, J. B. Translating ribosomes inhibit poliovirus negative-strand RNA synthesis. J. Virol. 73, 10104–10112 (1999).
Deiman, B. A., Koenen, A. K., Verlaan, P. W. & Pleij, C. W. Minimal template requirements for initiation of minus-strand synthesis in vitro by the RNA-dependent RNA polymerase of turnip yellow mosaic virus. J. Virol. 72, 3965–3972 (1998).
Singh, R. N. & Dreher, T. W. Specific site selection in RNA resulting from a combination of nonspecific secondary structure and –CCR– boxes: initiation of minus strand synthesis by turnip yellow mosaic virus RNA-dependent RNA polymerase. RNA 4, 1083–1095 (1998).
Matsuda, D., Yoshinari, S. & Dreher, T. W. eEF1A binding to aminoacylated viral RNA represses minus strand synthesis by TYMV RNA-dependent RNA polymerase. Virology 321, 47–56 (2004).
Choi, Y. G. & Rao, A. L. Packaging of brome mosaic virus RNA3 is mediated through a bipartite signal. J. Virol. 77, 9750–9757 (2003).
Koenig, R. et al. Nemesia ring necrosis virus: a new tymovirus with a genomic RNA having a histidylatable tobamovirus-like 3′ end. J. Gen. Virol. 86, 1827–1833 (2005).
van Belkum, A., Abrahams, J. P., Pleij, C. W. & Bosch, L. Five pseudoknots are present at the 204 nucleotides long 3′ noncoding region of tobacco mosaic virus RNA. Nucleic Acids Res. 13, 7673–7686 (1985).
Felden, B., Florentz, C., Giege, R. & Westhof, E. A central pseudoknotted three-way junction imposes tRNA-like mimicry and the orientation of three 5′ upstream pseudoknots in the 3′ terminus of tobacco mosaic virus RNA. RNA 2, 201–212 (1996).
Leathers, V., Tanguay, R., Kobayashi, M. & Gallie, D. R. A phylogenetically conserved sequence within viral 3′ untranslated RNA pseudoknots regulates translation. Mol. Cell Biol. 13, 5331–5347 (1993).
Zeenko, V. V. et al. Eukaryotic elongation factor 1A interacts with the upstream pseudoknot domain in the 3′ untranslated region of tobacco mosaic virus RNA. J. Virol. 76, 5678–5691 (2002).
Takamatsu, N., Watanabe, Y., Meshi, T. & Okada, Y. Mutational analysis of the pseudoknot region in the 3′ noncoding region of tobacco mosaic virus RNA. J. Virol. 64, 3686–3693 (1990).
Carr, T. et al. Tobamovirus infection is independent of HSP101 mRNA induction and protein expression. Virus Res. 121, 33–41 (2006).
Ray, D., Na, H. & White, K. A. Structural properties of a multifunctional T-shaped RNA domain that mediate efficient tomato bushy stunt virus RNA replication. J. Virol. 78, 10490–10500 (2004).
Fabian, M. R. & White, K. A. 5′-3′ RNA–RNA interaction facilitates cap- and poly(A) tail-independent translation of tomato bushy stunt virus mRNA: a potential common mechanism for tombusviridae. J. Biol. Chem. 279, 28862–28872 (2004).
Fabian, M. R. & White, K. A. Analysis of a 3′-translation enhancer in a tombusvirus: a dynamic model for RNA–RNA interactions of mRNA termini. RNA 12, 1304–1314 (2006).
Na, H., Fabian, M. R. & White, K. A. Conformational organization of the 3′ untranslated region in the tomato bushy stunt virus genome. RNA 12, 2199–2210 (2006).
Ferre-D'Amare, A. R., Zhou, K. & Doudna, J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature 395, 567–574 (1998). The crystal structure of a ribozyme revealed how the pseudoknot has a key role in folding and function.
Salehi-Ashtiani, K., Luptak, A., Litovchick, A. & Szostak, J. W. A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science 313, 1788–1792 (2006).
Klein, D. J. & Ferre-D'Amare, A. R. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313, 1752–1756 (2006).
Cochrane, J. C., Lipchock, S. V. & Strobel, S. A. Structural investigation of the GlmS ribozyme bound to its catalytic cofactor. Chem. Biol. 14, 97–105 (2007).
Chen, J. L. & Greider, C. W. An emerging consensus for telomerase RNA structure. Proc. Natl Acad. Sci. USA 101, 14683–14684 (2004).
Autexier, C., Pruzan, R., Funk, W. D. & Greider, C. W. Reconstitution of human telomerase activity and identification of a minimal functional region of the human telomerase RNA. EMBO J. 15, 5928–5935 (1996).
Comolli, L. R., Smirnov, I., Xu, L., Blackburn, E. H. & James, T. L. A molecular switch underlies a human telomerase disease. Proc. Natl Acad. Sci. USA 99, 16998–17003 (2002).
Theimer, C. A., Finger, L. D., Trantirek, L. & Feigon, J. Mutations linked to dyskeratosis congenita cause changes in the structural equilibrium in telomerase RNA. Proc. Natl Acad. Sci. USA 100, 449–454 (2003).
Yingling, Y. G. & Shapiro, B. A. The prediction of the wild-type telomerase RNA pseudoknot structure and the pivotal role of the bulge in its formation. J. Mol. Graph Model 25, 261–274 (2006).
Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).
Chen, Z. et al. Telomerase activity in Kaposi's sarcoma, squamous cell carcinoma, and basal cell carcinoma. Exp. Biol. Med. 226, 753–757 (2001).
Fragnet, L., Blasco, M. A., Klapper, W. & Rasschaert, D. The RNA subunit of telomerase is encoded by Marek's disease virus. J. Virol. 77, 5985–5996 (2003).
Trapp, S. et al. A virus-encoded telomerase RNA promotes malignant T cell lymphomagenesis. J. Exp. Med. 203, 1307–1317 (2006).
Artandi, S. E. Telomerase flies the coop: the telomerase RNA component as a viral-encoded oncogene. J. Exp. Med. 203, 1143–1145 (2006).
Wyatt, J. R., Puglisi, J. D. & Tinoco, I. Jr. RNA pseudoknots. Stability and loop size requirements. J. Mol. Biol. 214, 455–470 (1990).
Klovins, J. & van Duin, J. A long-range pseudoknot in Qβ RNA is essential for replication. J. Mol. Biol. 294, 875–884 (1999).
Paul, C. P., Barry, J. K., Dinesh-Kumar, S. P., Brault, V. & Miller, W. A. A sequence required for-1 ribosomal frameshifting located four kilobases downstream of the frameshift site. J. Mol. Biol. 310, 987–999 (2001).
Barry, J. K. & Miller, W. A. A-1 ribosomal frameshift element that requires base pairing across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral RNA. Proc. Natl Acad. Sci. USA 99, 11133–11138 (2002). This paper provides an elegant description of how long-range interactions in viral RNAs can be exploited for regulatory purposes.
Neuman, B. W. et al. Inhibition, escape and attenuated growth of severe acute respiratory syndrome coronavirus treated with antisense morpholino oligomers. J. Virol. 79, 9665–9676 (2005).
Mathews, D. H. & Turner, D. H. Prediction of RNA secondary structure by free energy minimization. Curr. Opin. Struct. Biol. 16, 270–278 (2006).
Reeder, J. & Giegerich, R. Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5, 104 (2004).
Lyngso, R. B. & Pedersen, C. N. RNA pseudoknot prediction in energy-based models. J. Comput. Biol. 7, 409–427 (2000).
Shapiro, B. A., Yingling, Y. G., Kasprzak, W. & Bindewald E. Bridging the gap in RNA structure prediction. Curr. Opin. Struct. Biol. 17, 157–165 (2007).
Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).
Tuerk, C., MacDougal, S. & Gold, L. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl Acad. Sci. USA 89, 6988–6992 (1992).
Kensch, O. et al. HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity. J. Biol. Chem. 275, 18271–18278 (2000).
Chaloin, L., Lehmann, M. J., Sczakiel, G. & Restle, T. Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. Nucleic Acids Res. 30, 4001–4008 (2002).
Held, D. M., Kissel, J. D., Saran, D., Michalowski, D. & Burke, D. H. Differential susceptibility of HIV-1 reverse transcriptase to inhibition by RNA aptamers in enzymatic reactions monitoring specific steps during genome replication. J. Biol. Chem. 281, 25712–25722 (2006).
Jaeger, J., Restle, T. & Steitz, T. A. The structure of HIV-1 reverse transcriptase complexed with an RNA pseudoknot inhibitor. EMBO J. 17, 4535–4542 (1998).
Sayer, N., Ibrahim, J., Turner, K., Tahiri-Alaoui, A. & James, W. Structural characterization of a 2′F-RNA aptamer that binds a HIV-1 SU glycoprotein, gp120. Biochem. Biophys. Res. Commun. 293, 924–931 (2002).
Kim, M. Y. & Jeong, S. RNA aptamers that bind the nucleocapsid protein contain pseudoknots. Mol. Cell 16, 413–417 (2003).
Noller, H. F. RNA structure: reading the ribosome. Science 309, 1508–1514 (2005).
Acknowledgements
We are grateful to Stephen Smerdon for critical reading of the manuscript.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information S1(Table)
Viral pseudoknots (PDF 111 kb)
Supplementary information S2(Table)
Cellular pseudoknots (PDF 113 kb)
Supplementary information S3(Figure)
Pseudoknot-ribosome interactions. (PDF 487 kb)
Supplementary information S4(Figure)
The hepatitis delta virus ribozyme. (PDF 230 kb)
Supplementary information S5(Figure)
The human telomerase RNA pseudoknot. (PDF 173 kb)
Related links
Related links
DATABASES
Entrez Genome Project
Entrez Genome
FURTHER INFORMATION
Glossary
- Satellite virus
-
A subviral agent composed of an RNA or DNA molecule that is replicated in association with a helper virus, but encapsidated in its own encoded capsid protein.
- Peptidyl (P) site
-
The site on the small ribosomal subunit that holds the tRNA molecule that is linked to the growing end of the polypeptide chain.
- Aminoacyl (A) site
-
The site on the small ribosomal subunit that accepts and proofreads incoming aminoacyl tRNAs prior to peptidyl transfer.
- Exit (E) site
-
The site on the small ribosomal subunit through which tRNAs pass after they have donated their amino acid to the growing polypeptide chain.
- Ribozyme
-
An enzyme that has an RNA as it catalytic component.
- ShineDalgarno sequence
-
(AGGAGG). This sequence is located 5′ of the AUG codon on bacterial mRNAs and functions as the signal for the initiation of protein synthesis.
- Transfer messenger RNA
-
(tmRNA). An RNA that possesses both tRNA and mRNA characteristics that functions in the recognition and rescue of ribosomes stalled on aberrant mRNAs, the disposal of the causative defective mRNAs and the promotion of the degradation of ribosome-associated protein fragments.
- Rolling-circle replication
-
A mode of replication that uses a circular molecule as a template to produce concatemers of linear molecules.
- Riboswitch
-
A conformational switch in an RNA molecule that is induced by a small metabolite, and that leads to a switch in gene-regulatory function.
- Aptamer
-
An RNA domain, either engineered or natural, that forms a precise 3D structure and selectively binds a target molecule.
Rights and permissions
About this article
Cite this article
Brierley, I., Pennell, S. & Gilbert, R. Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nat Rev Microbiol 5, 598–610 (2007). https://doi.org/10.1038/nrmicro1704
Issue date:
DOI: https://doi.org/10.1038/nrmicro1704
This article is cited by
-
Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression
Nature Communications (2022)
-
Pseudoknot length modulates the folding, conformational dynamics, and robustness of Xrn1 resistance of flaviviral xrRNAs
Nature Communications (2021)
-
Co-infection of a novel fusagravirus and a partitivirus in a Korean isolate of Rosellinia necatrix KACC40168
Virus Genes (2021)
-
A novel conditional NPM-ALK-driven model of CD30+ T-cell lymphoma mediated by a translational stop cassette
Oncogene (2020)
-
Characterization of a novel dsRNA mycovirus of Trichoderma atroviride NFCF377 reveals a member of “Fusagraviridae” with changes in antifungal activity of the host fungus
Journal of Microbiology (2020)


