Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viral RNA pseudoknots: versatile motifs in gene expression and replication

Key Points

  • RNA pseudoknots are structural motifs in RNA that are increasingly recognized in viral and cellular RNAs. They have been shown to have a various roles in virus and cellular gene expression.

  • Pseudoknots are formed upon base pairing of a single-stranded region of RNA in the loop of a hairpin to a stretch of complementary nucleotides elsewhere in the RNA chain. This simple folding strategy can generate a large number of stable three-dimensional folds, which display a diverse range of highly specific functions.

  • Pseudoknot function is frequently associated with interactions with ribosomes. The inclusion of pseudoknots in an mRNA can thus confer unusual translational properties.

  • Many RNA viruses use pseudoknots in the control of viral RNA translation, replication and the switch between the two processes. Some satellite viruses encode ribozymes with active sites that are folded by a pseudoknot.

  • In cellular RNAs, pseudoknots are associated with all aspects of mRNA function and also ribosome function, as ribosomal RNAs contain numerous pseudoknots. Other essential cellular pseudoknots have been described in telomerase RNA and transfer messenger RNA.

  • Future research into pseudoknots will focus on structure–function relationships and bioinformatics identification of pseudoknots in genomes. The use of pseudoknots in antiviral applications could also become more widespread.

Abstract

RNA pseudoknots are structural elements found in almost all classes of RNA. First recognized in the genomes of plant viruses, they are now established as a widespread motif with diverse functions in various biological processes. This Review focuses on viral pseudoknots and their role in virus gene expression and genome replication. Although emphasis is placed on those well defined pseudoknots that are involved in unusual mechanisms of viral translational initiation and elongation, the broader roles of pseudoknots are also discussed, including comparisons with relevant cellular counterparts. The relationship between RNA pseudoknot structure and function is also addressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA pseudoknots in virus gene expression.
Figure 2: RNA pseudoknot structure.
Figure 3: Pseudoknots and internal ribosome entry.
Figure 4: Pseudoknots and ribosomal frameshifting.
Figure 5: Pseudoknots and transfer RNA-like structures.

Similar content being viewed by others

References

  1. Rietveld, K., Van Poelgeest, R., Pleij, C. W., Van Boom, J. H. & Bosch, L. The tRNA-like structure at the 3′ terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA. Nucleic Acids Res. 10, 1929–1946 (1982). The first experimental identification of an RNA pseudoknot.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rietveld, K., Pleij, C. W. & Bosch, L. Three-dimensional models of the tRNA-like 3′ termini of some plant viral RNAs. EMBO J. 2, 1079–1085 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pleij, C. W., Rietveld, K. & Bosch, L. A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res. 13, 1717–1731 (1985). A fundamental paper describing the pseudoknot building principle, setting the rules for pseudoknot formation and providing the first examples.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pleij, C. W. Pseudoknots: a new motif in the RNA game. Trends Biochem. Sci. 15, 143–147 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. ten Dam, E., Pleij, K. & Draper, D. Structural and functional aspects of RNA pseudoknots. Biochemistry 31, 11665–11676 (1992).

    Article  CAS  Google Scholar 

  6. Hilbers, C. W., Michiels, P. J. & Heus, H. A. New developments in structure determination of pseudoknots. Biopolymers 48, 137–153 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Giedroc, D. P., Theimer, C. A. & Nixon, P. L. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. J. Mol. Biol. 298, 167–185 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fechter, P., Rudinger-Thirion, J., Florentz, C. & Giege, R. Novel features in the tRNA-like world of plant viral RNAs. Cell. Mol. Life Sci. 58, 1547–1561 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Been, M. D. Molecular biology. Versatility of self-cleaving ribozymes. Science 313, 1745–1747 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Theimer, C. A. & Feigon, J. Structure and function of telomerase RNA. Curr. Opin. Struct. Biol. 16, 307–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Hellen, C. U. Bypassing translation initiation. Structure 15, 4–6 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, C., Le, S. Y., Ali, N. & Siddiqui, A. An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5′ noncoding region. RNA 1, 526–537 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Thiel, V. et al. Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 84, 2305–2315 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. ten Dam, E. B., Pleij, C. W. & Bosch, L. RNA pseudoknots: translational frameshifting and readthrough on viral RNAs. Virus Genes 4, 121–136 (1990). The first detailed description of a large number of pseudoknots that act during the elongation phase of viral protein synthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baril, M., Dulude, D., Steinberg, S. V. & Brakier-Gingras, L. The frameshift stimulatory signal of human immunodeficiency virus type 1 group O is a pseudoknot. J. Mol. Biol. 331, 571–583 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McPheeters, D. S., Stormo, G. D. & Gold, L. Autogenous regulatory site on the bacteriophage T4 gene 32 messenger RNA. J. Mol. Biol. 201, 517–535 (1988). The first description of an autoregulatory viral pseudoknot that is bound specifically by a viral protein.

    Article  CAS  PubMed  Google Scholar 

  17. Taylor, J. M. Structure and replication of hepatitis delta virus RNA. Curr. Top. Microbiol. Immunol. 307, 1–23 (2006).

    CAS  PubMed  Google Scholar 

  18. Westhof, E. & Jaeger, L. RNA pseudoknots. Curr. Opin. Struct. Biol. 2, 327–333 (1992).

    Article  CAS  PubMed Central  Google Scholar 

  19. van Batenburg, F. H., Gultyaev, A. P. & Pleij, C. W. PseudoBase: structural information on RNA pseudoknots. Nucleic Acids Res. 29, 194–195 (2001). A valuable resource of RNA pseudoknot information.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, N., Shiffeldrim, N., Gan, H. H. & Schlick, T. Candidates for novel RNA topologies. J. Mol. Biol. 341, 1129–1144 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Kolk, M. H. et al. NMR structure of a classical pseudoknot: interplay of single- and double-stranded RNA. Science 280, 434–438 (1998). This work revealed the potential for pseudoknot loop–helix interactions.

    Article  CAS  PubMed  Google Scholar 

  22. Mans, R. M., Pleij, C. W. & Bosch, L. tRNA-like structures. Structure, function and evolutionary significance. Eur. J. Biochem. 201, 303–324 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Deiman, B. A. L. M. & Pleij, C. W. A. Pseudoknots: a vital feature in viral RNA. Sem. Virol. 8, 166–175 (1997).

    Article  CAS  Google Scholar 

  24. Kim, Y. G., Su, L., Maas, S., O'Neill, A. & Rich, A. Specific mutations in a viral RNA pseudoknot drastically change ribosomal frameshifting efficiency. Proc. Natl Acad. Sci. USA 96, 14234–14239 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Theimer, C. A., Blois, C. A. & Feigon, J. Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol. Cell 17, 671–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Schuler, M. et al. Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nature Struct. Mol. Biol. 13, 1092–1096 (2006).

    Article  CAS  Google Scholar 

  27. Pfingsten, J. S., Costantino, D. A. & Kieft, J. S. Structural basis for ribosome recruitment and manipulation by a viral IRES RNA. Science 314, 1450–1454 (2006). References 26 and 27, published simultaneously, provided a wealth of information on pseudoknot folding in large RNAs and how structural features that interact with ribosomes can be generated by such folding strategies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marintchev, A. & Wagner, G. Translation initiation: structures, mechanisms and evolution. Q. Rev. Biophys. 37, 197–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Wells, S. E., Hillner, P. E., Vale, R. D. & Sachs, A. B. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2, 135–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Jang, S. K. Internal initiation: IRES elements of picornaviruses and hepatitis C virus. Virus Res. 119, 2–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Dreher, T. W. & Miller, W. A. Translational control in positive strand RNA plant viruses. Virology 344, 185–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Fraser, C. S. & Doudna, J. A. Structural and mechanistic insights into hepatitis C viral translation initiation. Nature Rev. Microbiol. 5, 29–38 (2007).

    Article  CAS  Google Scholar 

  33. Kieft, J. S., Zhou, K., Jubin, R. & Doudna, J. A. Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7, 194–206 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Otto, G. A. & Puglisi, J. D. The pathway of HCV IRES-mediated translation initiation. Cell 119, 369–380 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Spahn, C. M. et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit. Science 291, 1959–1962 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Boehringer, D., Thermann, R., Ostareck-Lederer, A., Lewis, J. D. & Stark, H. Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. Structure 13, 1695–1706 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Laletina, E. et al. Proteins surrounding hairpin IIIe of the hepatitis C virus internal ribosome entry site on the human 40S ribosomal subunit. Nucleic Acids Res. 34, 2027–2036 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fukushi, S. et al. Ribosomal protein S5 interacts with the internal ribosomal entry site of hepatitis C virus. J. Biol. Chem. 276, 20824–20826 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Siridechadilok, B., Fraser, C. S., Hall, R. J., Doudna, J. A. & Nogales, E. Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310, 1513–1515 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Wilson, J. E., Pestova, T. V., Hellen, C. U. & Sarnow, P. Initiation of protein synthesis from the A site of the ribosome. Cell 102, 511–520 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Pfingsten, J. S., Costantino, D. A. & Kieft, J. S. Conservation and diversity among the three-dimensional folds of the dicistroviridae intergenic region IRESes. J. Mol. Biol. 370, 856–869 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Spahn, C. M. et al. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Cell 118, 465–475 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Pestova, T. V. & Hellen, C. U. Translation elongation after assembly of ribosomes on the cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev. 17, 181–186 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jan, E., Kinzy, T. G. & Sarnow, P. Divergent tRNA-like element supports initiation, elongation, and termination of protein biosynthesis. Proc. Natl Acad. Sci. USA 100, 15410–15415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kanamori, Y. & Nakashima, N. A tertiary structure model of the internal ribosome entry site (IRES) for methionine-independent initiation of translation. RNA 7, 266–274 (2001). A mutational and phylogenetic analysis of an IGR IRES that led to the realization that the IRES was composed of three pseudoknots.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jan, E. & Sarnow, P. Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. J. Mol. Biol. 324, 889–902 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Yusupov, M. M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Nishiyama, T. et al. Structural elements in the internal ribosome entry site of Plautia stali intestine virus responsible for binding with ribosomes. Nucleic Acids Res. 31, 2434–2442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamamoto, H., Nakashima, N., Ikeda, Y. & Uchiumi, T. Binding mode of the first aminoacyl-tRNA in translation initiation mediated by Plautia stali intestine virus internal ribosome entry site. J. Biol. Chem. 282, 7770–7776 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Powers, T. & Noller, H. F. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 10, 2203–2214 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Batey, R. T., Rambo, R. P. & Doudna, J. A. Tertiary motifs in RNA structure and folding. Angew Chem. Int. Ed. Engl. 38, 2326–2343 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Shamoo, Y., Tam, A., Konigsberg, W. H. & Williams, K. R. Translational repression by the bacteriophage T4 gene 32 protein involves specific recognition of an RNA pseudoknot structure. J. Mol. Biol. 232, 89–104 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Holland, J. A., Hansen, M. R., Du, Z. & Hoffman, D. W. An examination of coaxial stacking of helical stems in a pseudoknot motif: the gene 32 messenger RNA pseudoknot of bacteriophage T2. RNA 5, 257–271 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tang, C. K. & Draper, D. E. Unusual mRNA pseudoknot structure is recognized by a protein translational repressor. Cell 57, 531–536 (1989).

    Article  CAS  PubMed  Google Scholar 

  55. Schlax, P. J., Xavier, K. A., Gluick, T. C. & Draper, D. E. Translational repression of the Escherichia coli α operon mRNA: importance of an mRNA conformational switch and a ternary entrapment complex. J. Biol. Chem. 276, 38494–38501 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Mathy, N. et al. Specific recognition of rpsO mRNA and 16S rRNA by Escherichia coli ribosomal protein S15 relies on both mimicry and site differentiation. Mol. Microbiol. 52, 661–675 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brierley, I. & Pennell, S. Structure and function of the stimulatory RNAs involved in programmed eukaryotic-1 ribosomal frameshifting. Cold Spring Harb. Symp. Quant. Biol. 66, 233–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Brierley, I. & Dos Ramos, F. J. Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Virus Res. 119, 29–42 (2006)

    Article  CAS  PubMed  Google Scholar 

  59. Brierley, I. Ribosomal frameshifting viral RNAs. J. Gen. Virol. 76, 1885–1892 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Shehu-Xhilaga, M., Crowe, S. M. & Mak, J. Maintenance of the Gag/Gag–Pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. J. Virol. 75, 1834–1841 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dinman, J. D. & Wickner, R. B. Ribosomal frameshifting efficiency and Gag/Gag–Pol ratio are critical for yeast M1 double-stranded RNA virus propagation. J. Virol. 66, 3669–3676 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhai, Y. et al. Insights into SARS-CoV transcription and replication from the structure of the nsp7–nsp8 hexadecamer. Nature Struct. Mol. Biol. 12, 980–986 (2005).

    Article  CAS  Google Scholar 

  63. Imbert, I. et al. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 25, 4933–4942 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baranov, P. V. et al. Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology 332, 498–510 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Plant, E. P. et al. A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal. PLoS Biol. 3, e172 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brierley, I., Digard, P. & Inglis, S. C. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57, 537–547 (1989). The first experimental verification of a role for pseudoknots in translational frameshifting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yusupova, G. Z., Yusupov, M. M., Cate, J. H. & Noller, H. F. The path of messenger RNA through the ribosome. Cell 106, 233–241 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Plant, E. P. et al. The 9-A solution: how mRNA pseudoknots promote efficient programmed-1 ribosomal frameshifting. RNA 9, 168–174 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Plant, E. P. & Dinman, J. D. Torsional restraint: a new twist on frameshifting pseudoknots. Nucleic Acids Res. 33, 1825–1833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Takyar, S., Hickerson, R. P. & Noller, H. F. mRNA helicase activity of the ribosome. Cell 120, 49–58 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Namy, O., Moran, S. J., Stuart, D. I., Gilbert, R. J. & Brierley, I. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 441, 244–247 (2006). This cryo-EM study was the first experimental visualization of how a pseudoknot can compromise translational elongation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nilsson, J., Sengupta, J., Frank, J. & Nissen, P. Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome. EMBO Rep. 5, 1137–1141 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Su, L., Chen, L., Egli, M., Berger, J. M. & Rich, A. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot. Nature Struct. Biol. 6, 285–292 (1999). The first crystal structure of a frameshift-promoting pseudoknot, yielding a wealth of information about pseudoknot folding.

    Article  CAS  PubMed  Google Scholar 

  74. Michiels, P. J. et al. Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting. J. Mol. Biol. 310, 1109–1123 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Cornish, P. V., Stammler, S. N. & Giedroc, D. P. The global structures of a wild-type and poorly functional plant luteoviral mRNA pseudoknot are essentially identical. RNA 12, 1959–1969 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shen, L. X. & Tinoco, I. Jr. The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus. J. Mol. Biol. 247, 963–978 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, Y. et al. Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral Gag–Pro frameshift site. RNA 8, 981–996 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cornish, P. V., Hennig, M. & Giedroc, D. P. A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated-1 ribosomal frameshifting. Proc. Natl Acad. Sci. USA 102, 12694–12699 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hansen, T. M., Reihani, S. N., Oddershede, L. B. & Sorensen, M. A. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting. Proc. Natl Acad. Sci. USA 104, 5830–5835 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shigemoto, K. et al. Identification and characterisation of a developmentally regulated mammalian gene that utilises −1 programmed ribosomal frameshifting. Nucleic Acids Res. 29, 4079–4088 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Manktelow, E., Shigemoto, K. & Brierley, I. Characterization of the frameshift signal of Edr, a mammalian example of programmed −1 ribosomal frameshifting. Nucleic Acids Res. 33, 1553–1563 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wills, N. M., Moore, B., Hammer, A., Gesteland, R. F. & Atkins, J. F. A functional-1 ribosomal frameshift signal in the human paraneoplastic Ma3 gene. J. Biol. Chem. 281, 7082–7088 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Jacobs, J. L., Belew, A. T., Rakauskaite, R. & Dinman, J. D. Identification of functional, endogenous programmed-1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae. Nucleic Acids Res. 35, 165–174 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Nonin-Lecomte, S., Felden, B. & Dardel, F. NMR structure of the Aquifex aeolicus tmRNA pseudoknot PK1: new insights into the recoding event of the ribosomal trans-translation. Nucleic Acids Res. 34, 1847–1853 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kaur, S., Gillet, R., Li, W., Gursky, R. & Frank, J. Cryo-EM visualization of transfer messenger RNA with two SmpBs in a stalled ribosome. Proc. Natl Acad. Sci. USA 103, 16484–16489 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moore, S. D. & Sauer, R. T. The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem. 76, 101–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Ivanov, I. P. & Atkins, J. F. Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res. 35, 1842–1858 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zimmer, M., Sattelberger, E., Inman R. B., Calendar R. & Loessner, M. J. Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed +1 translational frameshifting in structural protein synthesis. Mol. Microbiol. 50, 303–317 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Wills, N. M., Gesteland, R. F. & Atkins, J. F. Evidence that a downstream pseudoknot is required for translational read-through of the Moloney murine leukemia virus gag stop codon. Proc. Natl Acad. Sci. USA 88, 6991–6995 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Feng, Y. X., Yuan, H., Rein, A. & Levin, J. G. Bipartite signal for read-through suppression in murine leukemia virus mRNA: an eight-nucleotide purine-rich sequence immediately downstream of the gag termination codon followed by an RNA pseudoknot. J. Virol. 66, 5127–5132 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wills, N. M., Gesteland, R. F. & Atkins, J. F. Pseudoknot-dependent read-through of retroviral gag termination codons: importance of sequences in the spacer and loop 2. EMBO J. 13, 4137–4144 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Alam, S. L., Wills, N. M., Ingram, J. A., Atkins, J. F. & Gesteland, R. F. Structural studies of the RNA pseudoknot required for readthrough of the gag-termination codon of murine leukemia virus. J. Mol. Biol. 288, 837–852 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Gluick, T. C., Wills, N. M., Gesteland, R. F. & Draper, D. E. Folding of an mRNA pseudoknot required for stop codon readthrough: effects of mono- and divalent ions on stability. Biochemistry 36, 16173–16186 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Orlova, M., Yueh, A., Leung, J. & Goff, S. P. Reverse transcriptase of Moloney murine leukemia virus binds to eukaryotic release factor 1 to modulate suppression of translational termination. Cell 115, 319–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Pinck, M., Yot, P., Chapeville, F. & Duranton, H. M. Enzymatic binding of valine to the 3′ end of TYMV-RNA. Nature 226, 954–956 (1970).

    Article  CAS  PubMed  Google Scholar 

  96. Giege, R. Interplay of tRNA-like structures from plant viral RNAs with partners of the translation and replication machineries. Proc. Natl Acad. Sci. USA 93, 12078–12081 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Matsuda, D. & Dreher, T. W. The tRNA-like structure of turnip yellow mosaic virus RNA is a 3′-translational enhancer. Virology 321, 36–46 (2004). A detailed investigation of the role of the TYMV 3′ UTR in protein synthesis.

    Article  CAS  PubMed  Google Scholar 

  98. Barends, S., Bink, H. H., van den Worm, S. H., Pleij, C. W. & Kraal, B. Entrapping ribosomes for viral translation: tRNA mimicry as a molecular Trojan horse. Cell 112, 123–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Matsuda, D. & Dreher, T. W. Cap- and initiator tRNA-dependent initiation of TYMV polyprotein synthesis by ribosomes: evaluation of the Trojan horse model for TYMV RNA translation. RNA 13, 129–137 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kolakofsky, D. & Weissmann, C. Possible mechanism for transition of viral RNA from polysome to replication complex. Nature New Biol. 231, 42–46 (1971).

    Article  CAS  PubMed  Google Scholar 

  101. Gamarnik, A. V. & Andino, R. Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev. 12, 2293–2304 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Barton, D. J., Morasco, B. J. & Flanegan, J. B. Translating ribosomes inhibit poliovirus negative-strand RNA synthesis. J. Virol. 73, 10104–10112 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Deiman, B. A., Koenen, A. K., Verlaan, P. W. & Pleij, C. W. Minimal template requirements for initiation of minus-strand synthesis in vitro by the RNA-dependent RNA polymerase of turnip yellow mosaic virus. J. Virol. 72, 3965–3972 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Singh, R. N. & Dreher, T. W. Specific site selection in RNA resulting from a combination of nonspecific secondary structure and –CCR– boxes: initiation of minus strand synthesis by turnip yellow mosaic virus RNA-dependent RNA polymerase. RNA 4, 1083–1095 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Matsuda, D., Yoshinari, S. & Dreher, T. W. eEF1A binding to aminoacylated viral RNA represses minus strand synthesis by TYMV RNA-dependent RNA polymerase. Virology 321, 47–56 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Choi, Y. G. & Rao, A. L. Packaging of brome mosaic virus RNA3 is mediated through a bipartite signal. J. Virol. 77, 9750–9757 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Koenig, R. et al. Nemesia ring necrosis virus: a new tymovirus with a genomic RNA having a histidylatable tobamovirus-like 3′ end. J. Gen. Virol. 86, 1827–1833 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. van Belkum, A., Abrahams, J. P., Pleij, C. W. & Bosch, L. Five pseudoknots are present at the 204 nucleotides long 3′ noncoding region of tobacco mosaic virus RNA. Nucleic Acids Res. 13, 7673–7686 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Felden, B., Florentz, C., Giege, R. & Westhof, E. A central pseudoknotted three-way junction imposes tRNA-like mimicry and the orientation of three 5′ upstream pseudoknots in the 3′ terminus of tobacco mosaic virus RNA. RNA 2, 201–212 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Leathers, V., Tanguay, R., Kobayashi, M. & Gallie, D. R. A phylogenetically conserved sequence within viral 3′ untranslated RNA pseudoknots regulates translation. Mol. Cell Biol. 13, 5331–5347 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zeenko, V. V. et al. Eukaryotic elongation factor 1A interacts with the upstream pseudoknot domain in the 3′ untranslated region of tobacco mosaic virus RNA. J. Virol. 76, 5678–5691 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Takamatsu, N., Watanabe, Y., Meshi, T. & Okada, Y. Mutational analysis of the pseudoknot region in the 3′ noncoding region of tobacco mosaic virus RNA. J. Virol. 64, 3686–3693 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Carr, T. et al. Tobamovirus infection is independent of HSP101 mRNA induction and protein expression. Virus Res. 121, 33–41 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Ray, D., Na, H. & White, K. A. Structural properties of a multifunctional T-shaped RNA domain that mediate efficient tomato bushy stunt virus RNA replication. J. Virol. 78, 10490–10500 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fabian, M. R. & White, K. A. 5′-3′ RNA–RNA interaction facilitates cap- and poly(A) tail-independent translation of tomato bushy stunt virus mRNA: a potential common mechanism for tombusviridae. J. Biol. Chem. 279, 28862–28872 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Fabian, M. R. & White, K. A. Analysis of a 3′-translation enhancer in a tombusvirus: a dynamic model for RNA–RNA interactions of mRNA termini. RNA 12, 1304–1314 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Na, H., Fabian, M. R. & White, K. A. Conformational organization of the 3′ untranslated region in the tomato bushy stunt virus genome. RNA 12, 2199–2210 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ferre-D'Amare, A. R., Zhou, K. & Doudna, J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature 395, 567–574 (1998). The crystal structure of a ribozyme revealed how the pseudoknot has a key role in folding and function.

    Article  CAS  PubMed  Google Scholar 

  119. Salehi-Ashtiani, K., Luptak, A., Litovchick, A. & Szostak, J. W. A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science 313, 1788–1792 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Klein, D. J. & Ferre-D'Amare, A. R. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313, 1752–1756 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Cochrane, J. C., Lipchock, S. V. & Strobel, S. A. Structural investigation of the GlmS ribozyme bound to its catalytic cofactor. Chem. Biol. 14, 97–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Chen, J. L. & Greider, C. W. An emerging consensus for telomerase RNA structure. Proc. Natl Acad. Sci. USA 101, 14683–14684 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Autexier, C., Pruzan, R., Funk, W. D. & Greider, C. W. Reconstitution of human telomerase activity and identification of a minimal functional region of the human telomerase RNA. EMBO J. 15, 5928–5935 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Comolli, L. R., Smirnov, I., Xu, L., Blackburn, E. H. & James, T. L. A molecular switch underlies a human telomerase disease. Proc. Natl Acad. Sci. USA 99, 16998–17003 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Theimer, C. A., Finger, L. D., Trantirek, L. & Feigon, J. Mutations linked to dyskeratosis congenita cause changes in the structural equilibrium in telomerase RNA. Proc. Natl Acad. Sci. USA 100, 449–454 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yingling, Y. G. & Shapiro, B. A. The prediction of the wild-type telomerase RNA pseudoknot structure and the pivotal role of the bulge in its formation. J. Mol. Graph Model 25, 261–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  128. Chen, Z. et al. Telomerase activity in Kaposi's sarcoma, squamous cell carcinoma, and basal cell carcinoma. Exp. Biol. Med. 226, 753–757 (2001).

    Article  CAS  Google Scholar 

  129. Fragnet, L., Blasco, M. A., Klapper, W. & Rasschaert, D. The RNA subunit of telomerase is encoded by Marek's disease virus. J. Virol. 77, 5985–5996 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Trapp, S. et al. A virus-encoded telomerase RNA promotes malignant T cell lymphomagenesis. J. Exp. Med. 203, 1307–1317 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Artandi, S. E. Telomerase flies the coop: the telomerase RNA component as a viral-encoded oncogene. J. Exp. Med. 203, 1143–1145 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wyatt, J. R., Puglisi, J. D. & Tinoco, I. Jr. RNA pseudoknots. Stability and loop size requirements. J. Mol. Biol. 214, 455–470 (1990).

    Article  CAS  PubMed  Google Scholar 

  133. Klovins, J. & van Duin, J. A long-range pseudoknot in Qβ RNA is essential for replication. J. Mol. Biol. 294, 875–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Paul, C. P., Barry, J. K., Dinesh-Kumar, S. P., Brault, V. & Miller, W. A. A sequence required for-1 ribosomal frameshifting located four kilobases downstream of the frameshift site. J. Mol. Biol. 310, 987–999 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Barry, J. K. & Miller, W. A. A-1 ribosomal frameshift element that requires base pairing across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral RNA. Proc. Natl Acad. Sci. USA 99, 11133–11138 (2002). This paper provides an elegant description of how long-range interactions in viral RNAs can be exploited for regulatory purposes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Neuman, B. W. et al. Inhibition, escape and attenuated growth of severe acute respiratory syndrome coronavirus treated with antisense morpholino oligomers. J. Virol. 79, 9665–9676 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mathews, D. H. & Turner, D. H. Prediction of RNA secondary structure by free energy minimization. Curr. Opin. Struct. Biol. 16, 270–278 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Reeder, J. & Giegerich, R. Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5, 104 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lyngso, R. B. & Pedersen, C. N. RNA pseudoknot prediction in energy-based models. J. Comput. Biol. 7, 409–427 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Shapiro, B. A., Yingling, Y. G., Kasprzak, W. & Bindewald E. Bridging the gap in RNA structure prediction. Curr. Opin. Struct. Biol. 17, 157–165 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  PubMed  Google Scholar 

  142. Tuerk, C., MacDougal, S. & Gold, L. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl Acad. Sci. USA 89, 6988–6992 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kensch, O. et al. HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity. J. Biol. Chem. 275, 18271–18278 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Chaloin, L., Lehmann, M. J., Sczakiel, G. & Restle, T. Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. Nucleic Acids Res. 30, 4001–4008 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Held, D. M., Kissel, J. D., Saran, D., Michalowski, D. & Burke, D. H. Differential susceptibility of HIV-1 reverse transcriptase to inhibition by RNA aptamers in enzymatic reactions monitoring specific steps during genome replication. J. Biol. Chem. 281, 25712–25722 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Jaeger, J., Restle, T. & Steitz, T. A. The structure of HIV-1 reverse transcriptase complexed with an RNA pseudoknot inhibitor. EMBO J. 17, 4535–4542 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sayer, N., Ibrahim, J., Turner, K., Tahiri-Alaoui, A. & James, W. Structural characterization of a 2′F-RNA aptamer that binds a HIV-1 SU glycoprotein, gp120. Biochem. Biophys. Res. Commun. 293, 924–931 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Kim, M. Y. & Jeong, S. RNA aptamers that bind the nucleocapsid protein contain pseudoknots. Mol. Cell 16, 413–417 (2003).

    CAS  Google Scholar 

  149. Noller, H. F. RNA structure: reading the ribosome. Science 309, 1508–1514 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Stephen Smerdon for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1(Table)

Viral pseudoknots (PDF 111 kb)

Supplementary information S2(Table)

Cellular pseudoknots (PDF 113 kb)

Supplementary information S3(Figure)

Pseudoknot-ribosome interactions. (PDF 487 kb)

Supplementary information S4(Figure)

The hepatitis delta virus ribozyme. (PDF 230 kb)

Supplementary information S5(Figure)

The human telomerase RNA pseudoknot. (PDF 173 kb)

Related links

Related links

DATABASES

Entrez Genome Project

Escherichia coli

Listeria monocytogenes

Entrez Genome

BWYV

CrPV

HCV

HDV

PSIV

SARS-CoV

TBSV

TMV

TYMV

FURTHER INFORMATION

Ian Brierley's homepage

Robert Gilbert's homepage

RNAmotif

PknotsRG

HotKnots

HPKNOTTER

PseudoViewer

PseudoBase

Glossary

Satellite virus

A subviral agent composed of an RNA or DNA molecule that is replicated in association with a helper virus, but encapsidated in its own encoded capsid protein.

Peptidyl (P) site

The site on the small ribosomal subunit that holds the tRNA molecule that is linked to the growing end of the polypeptide chain.

Aminoacyl (A) site

The site on the small ribosomal subunit that accepts and proofreads incoming aminoacyl tRNAs prior to peptidyl transfer.

Exit (E) site

The site on the small ribosomal subunit through which tRNAs pass after they have donated their amino acid to the growing polypeptide chain.

Ribozyme

An enzyme that has an RNA as it catalytic component.

ShineDalgarno sequence

(AGGAGG). This sequence is located 5′ of the AUG codon on bacterial mRNAs and functions as the signal for the initiation of protein synthesis.

Transfer messenger RNA

(tmRNA). An RNA that possesses both tRNA and mRNA characteristics that functions in the recognition and rescue of ribosomes stalled on aberrant mRNAs, the disposal of the causative defective mRNAs and the promotion of the degradation of ribosome-associated protein fragments.

Rolling-circle replication

A mode of replication that uses a circular molecule as a template to produce concatemers of linear molecules.

Riboswitch

A conformational switch in an RNA molecule that is induced by a small metabolite, and that leads to a switch in gene-regulatory function.

Aptamer

An RNA domain, either engineered or natural, that forms a precise 3D structure and selectively binds a target molecule.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brierley, I., Pennell, S. & Gilbert, R. Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nat Rev Microbiol 5, 598–610 (2007). https://doi.org/10.1038/nrmicro1704

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro1704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing