Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viral shape-shifting: norovirus evasion of the human immune system

Key Points

  • Noroviruses are a major cause of gastroenteritis, and there are currently no vaccines or antiviral treatments available to treat or prevent the >260 million gastroenteritis cases that are reported globally each year. Noroviruses have proven difficult to work with in the laboratory owing to the lack of cell culture systems and animal models, and therefore little is known about the pathogenesis caused by this virus, which has hampered the development of efficacious therapeutics.

  • The norovirus family contains two genogroups (GI and GII) that are most commonly associated with enteric disease in humans, and these genogroups contain more than 25 different genotypes that account for most human norovirus cases. However, outbreaks caused by the GII.4 genotype occur much more frequently than those caused by other genotypes in the GII genogroup, and GI outbreaks occur even less frequently. Although the majority of norovirus outbreaks are caused by the GII.4 genotype, the molecular and biological factors that regulate this disease burden are only partially understood.

  • The GII.4 genotype seems to operate in a similar fashion as influenza virus, whereby evolution of novel immune escape variants allows the virus to escape the predominant memory immune response. By contrast, the prototypic GI.1 noroviruses have remained relatively static over the same time period, evolving variants with identical histo-blood group antigen binding capabilities and similar antigenic properties. The molecular mechanisms governing differential evolution patterns remain a key mystery in the norovirus field.

  • Immunity against noroviruses has been difficult to assess owing to the complex effects of host pre-exposure histories and differential host susceptibility, which is correlated with blood group and secretor status. However, recent work has suggested that the GI and GII genogroups may use different mechanisms to escape immunological memory and that this is perhaps directly related to the plasticity of and complex evolutionary-related sequence information encoded in the P2 subdomain of the capsid protein.

  • The GII genogroup contains more amino acid sequence in the P2 subdomain, which may allow increased capsid plasticity and a tolerance for more amino acid variation or insertions and deletions. This would provide a larger repertoire of sequence targets for natural selection and adaptation to complex environmental selection processes, like herd immunity. By contrast, the GI genogroup contains less sequence information with more conserved, surface-exposed residues that are probably recognized by homologous antibodies as well as antibodies generated against heterologous GI strains. Thus, complex patterns of GI pre-exposure history, antibody cross reactivity and original antigenic sin may facilitate secondary infections of GI strains, whereas antigenic drift and receptor switching allow GII noroviruses, especially GII.4 viruses, to persist in human populations.

Abstract

Noroviruses are the most common cause of food-borne gastroenteritis worldwide, and explosive outbreaks frequently occur in community settings, where the virus can immobilize large numbers of infected individuals for 24–48 hours, making the development of effective vaccines and antiviral therapies a priority. However, several challenges have hampered therapeutic design, including: the limitations of cell culture and small-animal model systems; the complex effects of host pre-exposure histories; differential host susceptibility, which is correlated with blood group and secretor status; and the evolution of novel immune escape variants. In this Review, we discuss the molecular and structural mechanisms that facilitate the persistence of noroviruses in human populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome organization and capsid structure.
Figure 2: Phylogenetics of the norovirus capsid protein.
Figure 3: Variation in noroviruses that infect humans.
Figure 4: Genogroup variation.
Figure 5: Model of GI versus GII evolution in human populations.

Similar content being viewed by others

References

  1. Atmar, R. L. & Estes, M. K. The epidemiologic and clinical importance of norovirus infection. Gastroenterol. Clin. North Am. 35, 275–290 (2006).

    Article  PubMed  Google Scholar 

  2. CDC. Norovirus activity — United States, 2002. Morb. Mortal. Wkly Rep. 52, 41–45 (2003).

  3. Ike, A. C. et al. Molecular epidemiology of norovirus in outbreaks of gastroenteritis in southwest Germany from 2001 to 2004. J. Clin. Microbiol. 44, 1262–1267 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang, X. et al. Outbreaks of gastroenteritis in elderly nursing homes and retirement facilities associated with human caliciviruses. J. Med. Virol. 50, 335–341 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Mead, P. S. et al. Food-related illness and death in the United States. Emerg. Infect. Dis. 5, 607–625 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kapikian, A. Z. et al. Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. J. Virol. 10, 1075–1081 (1972). This article describes the discovery of Norwalk virus, which was the first norovirus to be recognized.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kapikian, A. Z. The discovery of the 27-nm Norwalk virus: an historic perspective. J. Infect. Dis. 181, S295–S302 (2000).

    Article  PubMed  Google Scholar 

  8. Jiang, X., Graham, D., Wang, K. & Estes, M. Norwalk virus genome cloning and characterization. Science 250, 1580–1583 (1990). This paper details the cloning of the Norwalk virus genome for the first time.

    Article  CAS  Google Scholar 

  9. Jiang, X., Wang, M., Graham, D. & Estes, M. Expression, self-assembly and antigenicity of the Norwalk virus capsid protein. J. Virol. 66, 6527–6532 (1992). This work shows that recombinant Norwalk virus capsid proteins can self-assemble into virus-like particles using the baculovirus expression system.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Green, K. Y., Lew, J. F., Jiang, X., Kapikian, A. Z. & Estes, M. K. Comparison of the reactivities of baculovirus-expressed recombinant Norwalk virus capsid antigen with those of the native Norwalk virus antigen in serologic assays and some epidemiologic observations. J. Clin. Microbiol. 31, 2185–2191 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Baric, R. S. et al. Expression and self-assembly of norwalk virus capsid protein from Venezuelan equine encephalitis virus replicons. J. Virol. 76, 3023–3030 (2002). The first formation of Norwalk virus-like particles using the Venezualian equine encephalitis vector expression system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lindesmith, L. et al. Human susceptibility and resistance to Norwalk virus infection. Natur Med. 9, 548–553 (2003). This article describes the susceptibility of secretor-positive humans to Norwalk virus, suggesting the presence of a human susceptibility allele.

    Article  CAS  Google Scholar 

  13. Wyatt, R. G. et al. Comparison of three agents of acute infectious nonbacterial gastroenteritis by cross-challenge in volunteers. J. Infect. Dis. 129, 709–714 (1974).

    Article  CAS  PubMed  Google Scholar 

  14. Fankhauser, R. L. et al. Epidemiologic and molecular trends of “Norwalk-like viruses” associated with outbreaks of gastroenteritis in the United States. J. Infect. Dis. 186, 1–7 (2002).

    Article  PubMed  Google Scholar 

  15. Green, S. M., Lambden, P. R., Caul, E. O., Ashley, C. R. & Clarke, I. N. Capsid diversity in small round-structured viruses: molecular characterization of an antigenically distinct human enteric calicivirus. Viru Res. 37, 271–283 (1995).

    Article  CAS  Google Scholar 

  16. Karst, S. M. et al. STAT1-dependent innate immunity to a Norwalk-like virus. Science. 299, 1575–1578 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Oliver, S. L. et al. Molecular characterization of bovine enteric caliciviruses: a distinct third genogroup of noroviruses (Norwalk-like viruses) unlikely to be of risk to humans. J. Virol. 77, 2789–2798 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vinje, J. & Koopmans, M. P. Simultaneous detection and genotyping of “Norwalk-like viruses” by oligonucleotide array in a reverse line blot hybridization format. J. Clin. Microbiol. 38, 2595–2601 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng, D. P. et al. Norovirus classification and proposed strain nomenclature. Virology 346, 312–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Katayama, K. et al. Phylogenetic analysis of the complete genome of 18 Norwalk-like viruses. Virology 299, 225–239 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Pletneva, M. A., Sosnovtsev, S. V. & Green, K. Y. The genome of hawaii virus and its relationship with other members of the caliciviridae. Virus Genes 23, 5–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Lindesmith, L. C. et al. Mechanisms of GII.4 norovirus persistence in human populations. PLoS Med. 5, e31 (2008). This paper discusses the binding and antigenic differences between a panel of GII.4 noroviruses that evolved over 20 years, suggesting that herd immunity may select for novel variants over time.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Donaldson, E. F., Lindesmith, L. C., Lobue, A. D. & Baric, R. S. Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations. Immunol. Rev. 225, 190–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Siebenga, J. J. et al. Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006. J. Virol. 81, 9932–9941 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Allen, D. J., Gray, J. J., Gallimore, C. I., Xerry, J. & Iturriza-Gomara, M. Analysis of amino acid variation in the P2 domain of the GII-4 norovirus VP1 protein reveals putative variant-specific epitopes. PLoS ONE 3, e1485 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Iritani, N. et al. Genetic analysis of the capsid gene of genotype GII.2 noroviruses. J. Virol. 82, 7336–7345 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carlsson, B. et al. Quasispecies dynamics and molecular evolution of human norovirus capsid P region during chronic infection. J. Gen. Virol. 90, 432–441 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Hennessy, E. P., Green, A. D., Connor, M. P., Darby, R. & MacDonald, P. Norwalk virus infection and disease is associated with ABO histo-blood group type. J. Infect. Dis. 188, 176–177 (2003).

    Article  PubMed  Google Scholar 

  29. Hutson, A. M., Atmar, R. L., Graham, D. Y. & Estes, M. K. Norwalk virus infection and disease is associated with ABO histo-blood group type. J. Infect. Dis. 185, 1335–1337 (2002).

    Article  PubMed  Google Scholar 

  30. Rockx, B. H., Vennema, H., Hoebe, C. J., Duizer, E. & Koopmans, M. P. Association of histo-blood group antigens and susceptibility to norovirus infections. J. Infect. Dis. 191, 749–754 (2005).

    Article  PubMed  Google Scholar 

  31. Parrino, T. A., Schreiber, D. S., Trier, J. S., Kapikian, A. Z. & Blacklow, N. R. Clinical immunity in acute gastroenteritis caused by Norwalk agent. N. Engl. J. Med. 297, 86–89 (1977).

    Article  CAS  PubMed  Google Scholar 

  32. Johnson, P. C., Mathewson, J. J., DuPont, H. L. & Greenberg, H. B. Multiple-challenge study of host susceptibility to Norwalk gastroenteritis in US adults. J. Infect. Dis. 161, 18–21 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Marionneau, S. et al. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology 122, 1967–1977 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Thorven, M. et al. A homozygous nonsense mutation (428G→A) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J. Virol. 79, 15351–15355 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lindesmith, L. et al. Cellular and humoral immunity following Snow Mountain virus challenge. J. Virol. 79, 2900–2909 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Larsson, M. M. et al. Antibody prevalence and titer to norovirus (genogroup II) correlate with secretor (FUT2) but not with ABO phenotype or Lewis (FUT3) genotype. J. Infect. Dis. 194, 1422–1427 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, P. et al. Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J. Virol. 79, 6714–6722 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carlsson, B. et al. The G428A nonsense mutation in FUT2 provides strong but not absolute protection against symptomatic GII.4 norovirus infection. PLoS ONE 4, e5593 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Shirato, H. et al. Noroviruses distinguish between type 1 and type 2 histo-blood group antigens for binding. J. Virol. 82, 10756–10767 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rydell, G. E. et al. Human noroviruses recognize sialyl Lewis x neoglycoproteins. Glycobiology 19, 309–320 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Prasad, B. V., Rothnagel, R., Jiang, X. & Estes, M. K. Three-dimensional structure of baculovirus-expressed Norwalk virus capsids. J. Virol. 68, 5117–5125 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Prasad, B. V. et al. X-ray crystallographic structure of the Norwalk virus capsid. Science 286, 287–290 (1999). This work describes the three-dimensional structure of the Norwalk VLP.

    Article  CAS  PubMed  Google Scholar 

  43. Bertolotti-Ciarlet, A., White, L. J., Chen, R., Prasad, B. V. & Estes, M. K. Structural requirements for the assembly of Norwalk virus-like particles. J. Virol. 76, 4044–4055 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bu, W. et al. Structural basis for the receptor binding specificity of the Norwalk virus. J. Virol. 82, 5340–5347 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Choi, J. M., Hutson, A. M., Estes, M. K. & Prasad, B. V. Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus. Proc. Natl Acad. Sci. USA 105, 9175–9180 (2008). This study and reference 44 demonstrate the three-dimensional structure of the Norwalk virus's protruding domain in complex with different HBGAs.

    Google Scholar 

  46. Prasad, B. V., Hardy, M. E. & Estes, M. K. Structural studies of recombinant Norwalk capsids. J. Infect. Dis. 181, S317–S321 (2000).

    Article  CAS  Google Scholar 

  47. Tan, M. et al. Mutations within the P2 domain of norovirus capsid affect binding to human histo-blood group antigens: evidence for a binding pocket. J. Virol. 77, 12562–12571 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cao, S. et al. Structural basis for the recognition of blood group trisaccharides by norovirus. J. Virol. 81, 5949–5957 (2007). This study elucidates the crystal structure of the protruding domain of a GII.4 virus in complex with HBGAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nilsson, M. et al. Evolution of human calicivirus RNA in vivo: accumulation of mutations in the protruding P2 domain of the capsid leads to structural changes and possibly a new phenotype. J. Virol. 77, 13117–13124 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lindesmith, L. C. et al. Heterotypic humoral and cellular immune responses following Norwalk virus infection. J. Virol. 9 Dec 2009 (doi:10.1128/JVI.02179-09).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. LoBue, A. D. et al. Multivalent norovirus vaccines induce strong mucosal and systemic blocking antibodies against multiple strains. Vaccine 24, 5220–5234 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. LoBue, A. D., Thompson, J. M., Lindesmith, L., Johnston, R. E. & Baric, R. S. Alphavirus-adjuvanted norovirus-like particle vaccines: heterologous, humoral, and mucosal immune responses protect against murine norovirus challenge. J. Virol. 83, 3212–3227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cannon, J. L. et al. Herd immunity to GII.4 noroviruses is supported by outbreak patient sera. J. Virol. 83, 5363–5374 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gray, J. J. et al. Detection of immunoglobulin M (IgM), IgA, and IgG Norwalk virus-specific antibodies by indirect enzyme-linked immunosorbent assay with baculovirus-expressed Norwalk virus capsid antigen in adult volunteers challenged with Norwalk virus. J. Clin. Microbiol. 32, 3059–3063 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Okhuysen, P. C., Jiang, X., Ye, L., Johnson, P. C. & Estes, M. K. Viral shedding and fecal IgA response after Norwalk virus infection. J. Infect. Dis. 171, 566–569 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Baron, R. C., Greenberg, H. B., Cukor, G. & Blacklow, N. R. Serological responses among teenagers after natural exposure to Norwalk virus. J. Infect. Dis. 150, 531–534 (1984).

    Article  CAS  PubMed  Google Scholar 

  57. Cubitt, W. D., Green, K. Y. & Payment, P. Prevalence of antibodies to the Hawaii strain of human calicivirus as measured by a recombinant protein based immunoassay. J. Med. Virol. 54, 135–139 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Hinkula, J., Ball, J. M., Lofgren, S., Estes, M. K. & Svensson, L. Antibody prevalence and immunoglobulin IgG subclass pattern to Norwalk virus in Sweden. J. Med. Virol. 47, 52–57 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Honma, S. et al. Epidemiological study of prevalence of genogroup II human calicivirus (Mexico virus) infections in Japan and Southeast Asia as determined by enzyme-linked immunosorbent assays. J. Clin. Microbiol. 36, 2481–2484 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jing, Y., Qian, Y., Huo, Y., Wang, L. P. & Jiang, X. Seroprevalence against Norwalk-like human caliciviruses in Beijing, China. J. Med. Virol. 60, 97–101 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Nakata, S. et al. Prevalence of human calicivirus infections in Kenya as determined by enzyme immunoassays for three genogroups of the virus. J. Clin. Microbiol. 36, 3160–3163 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Parker, S. P., Cubitt, W. D. & Jiang, X. Enzyme immunoassay using baculovirus-expressed human calicivirus (Mexico) for the measurement of IgG responses and determining its seroprevalence in London, UK. J. Med. Virol. 46, 194–200 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Boni, M. F. Vaccination and antigenic drift in influenza. Vaccine 26 (Suppl. 3), C8–C14 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Boni, M. F., Gog, J. R., Andreasen, V. & Christiansen, F. B. Influenza drift and epidemic size: the race between generating and escaping immunity. Theor. Popul. Biol. 65, 179–191 (2004).

    Article  PubMed  Google Scholar 

  65. Boni, M. F., Gog, J. R., Andreasen, V. & Feldman, M. W. Epidemic dynamics and antigenic evolution in a single season of influenza A. Proc. Biol. Sci. 273, 1307–1316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Domingo, E. RNA virus evolution and the control of viral disease. Prog. Drug Res 33, 93–133 (1989).

    Article  CAS  PubMed  Google Scholar 

  67. Eigen, M. The origin of genetic information: viruses as models. Gene 135, 37–47 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Noel, J. S. et al. Correlation of patient immune responses with genetically characterized small round-structured viruses involved in outbreaks of nonbacterial acute gastroenteritis in the United States, 1990 to 1995. J. Med. Virol. 53, 372–383 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Beaumier, C. M., Mathew, A., Bashyam, H. S. & Rothman, A. L. Cross-reactive memory CD8+ T cells alter the immune response to heterologous secondary dengue virus infections in mice in a sequence-specific manner. J. Infect. Dis. 197, 608–617 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Larke, N. et al. Combined single-clade candidate HIV-1 vaccines induce T cell responses limited by multiple forms of in vivo immune interference. Eur. J. Immunol. 37, 566–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Mongkolsapaya, J. et al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nature Med. 9, 921–927 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Muller, S. Avoiding deceptive imprinting of the immune response to HIV-1 infection in vaccine development. Int. Rev. Immunol. 23, 423–436 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Tobin, G. J. et al. Deceptive imprinting and immune refocusing in vaccine design. Vaccine 26, 6189–6199 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Wrammert, J. et al. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453, 667–671 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Souza, M., Azevedo, M. S., Jung, K., Cheetham, S. & Saif, L. J. Pathogenesis and immune responses in gnotobiotic calves after infection with the genogroup II.4-HS66 strain of human norovirus. J. Virol. 82, 1777–1786 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Souza, M., Costantini, V., Azevedo, M. S. & Saif, L. J. A human norovirus-like particle vaccine adjuvanted with ISCOM or mLT induces cytokine and antibody responses and protection to the homologous GII.4 human norovirus in a gnotobiotic pig disease model. Vaccine 25, 8448–8459 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Souza, M., Cheetham, S. M., Azevedo, M. S., Costantini, V. & Saif, L. J. Cytokine and antibody responses in gnotobiotic pigs after infection with human norovirus genogroup II.4 (HS66 strain). J. Virol. 81, 9183–9192 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chachu, K. A. et al. Antibody is critical for the clearance of murine norovirus infection. J. Virol. 82, 6610–6617 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chachu, K. A., LoBue, A. D., Strong, D. W., Baric, R. S. & Virgin, H. W. Immune mechanisms responsible for vaccination against and clearance of mucosal and lymphatic norovirus infection. PLoS Pathog. 4, e1000236 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Green, J., Norcott, J. P., Lewis, D., Arnold, C. & Brown, D. W. Norwalk-like viruses: demonstration of genomic diversity by polymerase chain reaction. J. Clin. Microbiol. 31, 3007–3012 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Caley, I. J. et al. Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector. J. Virol. 71, 3031–3038 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Davis, N. L., Brown, K. W. & Johnston, R. E. A viral vaccine vector that expresses foreign genes in lymph nodes and protects against mucosal challenge. J. Virol. 70, 3781–3787 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Davis, N. L. et al. Vaccination of macaques against pathogenic simian immunodeficiency virus with Venezuelan equine encephalitis virus replicon particles. J. Virol. 74, 371–378 (2000); erratum 74, 3430 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pushko, P. et al. Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239, 389–401 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Caley, I. J. et al. Venezuelan equine encephalitis virus vectors expressing HIV-1 proteins: vector design strategies for improved vaccine efficacy. Vaccine 17, 3124–3135 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Kamrud, K. I. et al. Analysis of Venezuelan equine encephalitis replicon particles packaged in different coats. PLoS ONE 3, e2709 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Davis, N. L. et al. Alphavirus replicon particles as candidate HIV vaccines. IUBMB Life 53, 209–211 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Rayner, J. O., Dryga, S. A. & Kamrud, K. I. Alphavirus vectors and vaccination. Rev. Med. Virol. 12, 279–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Someya, Y. Genomic organization of Norwalk-like viruses and functions of viral gene products. Nippon Rinsho 60, 1155–1164 (2002) (in Japanese).

    PubMed  Google Scholar 

  90. Huelsenbeck, J. P., R. F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Marti-Renom, M. A. et al. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291–325 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institute of Allergy and Infectious Diseases, US National Institutes of Health (grant AID56351).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph S. Baric.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Caliciviridae

A family of small (2740 nm), non-enveloped, icosahedral enteric viruses that infect a broad range of host species. These positive-sense, single-stranded RNA viruses obtained their name from the Latin word calix, meaning chalice, owing to the cup-shaped structures on the surface of intact capsids. Caliciviruses are divided into four genera: Norovirus, Sapovirus, Vesiviruses and Lagoviruses.

Virus-like particle

A non-infectious particle formed by viral structural proteins that recapitulates the virus structure without packaging the viral nucleic acid or proteins that are normally packaged by the virus.

Protective immunity

An acquired immune response sufficient to protect an individual from infection or reinfection by a pathogen. It can be induced by vaccination or by previous exposure to a particular pathogen.

Quasispecies

A cloud of genetically similar viral genotypes, some of which may contain a less fit phenotype that is capable of exploiting a new niche that is created by the neutralization of the predominant viral phenotype.

Herd immunity

Immunity that occurs in a population when enough individuals become immune to a particular pathogen to break the transmission chain of that pathogen, providing pseudo-protection to non-immune individuals.

Histo-blood group antigen

A member of the family of complex glycans that are expressed on the surfaces of red blood cells, gut and respiratory epithelia, and biological secretions in humans. Their expression is regulated by the fucosyltransferase genesFUT1, FUT2 and FUT3, which are polymorphic in human populations. Differential expression of these enzymes determines the moieties and modifications to these ligands that are expressed by different humans.

Secretor-positive

Pertaining to an individual who expresses the FUT1 ABO blood group antigens on the cells that line their mouths and guts and whose saliva contains the same antigens.

Non-secretor

Pertaining to an individual who does not express the FUT1 ABO blood group antigens on the cells that line their mouths and guts and therefore do not secrete them in the saliva.

Triangulation number

A measure that is used to describe the structure of the icosahedral viral capsid and that was first described by Caspar and Klug. The icosahedron itself has 20 equilateral triangular facets, each of which is divided into a number (T) of identical equilateral triangular subdivisions (or protein subunits), such that the capsid has 20T structure subunits.

Original antigenic sin

A host-mediated humoral or cellular immune response in which a memory response against a previously encountered pathogen is preferentially used against a new pathogen variant rather than another primary response being produced.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donaldson, E., Lindesmith, L., LoBue, A. et al. Viral shape-shifting: norovirus evasion of the human immune system. Nat Rev Microbiol 8, 231–241 (2010). https://doi.org/10.1038/nrmicro2296

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro2296

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing