Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modulation of NF-κB signalling by microbial pathogens

Key Points

  • The nuclear factor-κB (NF-κB) family of transcription factors plays a central part in orchestrating the innate and adaptive immune response against invading microbial pathogens. Successful pathogens have acquired multiple mechanisms to control the signalling pathways that regulate the NF-κB cascade, and they can collectively target every aspect of the NF-κB signalling pathway. This Review focuses on the different strategies used by viruses, bacteria and parasites to manipulate NF-κB functions.

  • The essential role of NF-κB family members in protection against viruses, bacteria and parasites has been established by the observation that knocking down (ablating) the expression of any of the NF-κB components or blocking their signalling function increases host susceptibility to diverse microbial pathogens.

  • Viruses are obligate intracellular parasites and frequently either activate or inhibit the NF-κB signalling pathway during different phases of their life cycle. So, a delicate balance must be maintained between activation and inhibition of the NF-κB pathway. Some viruses uniquely activate NF-κB to promote viral replication and to control virus-induced cellular apoptosis.

  • Viruses usually activate or suppress the NF-κB signalling pathway by modulating the function of multiple signalling receptors, adaptor molecules, cellular kinases, and cellular NF-κB inhibitors or regulators, and also by direct interaction with the NF-κB subunits themselves. Virus-encoded proteins can also sometimes modulate the transcriptional activity of activated NF-κB after translocation to the nucleus.

  • Bacteria and parasites can activate or inhibit the NF-κB signalling pathway, depending on the host cellular status that most benefits the pathogen. Bacteria-derived molecules can modulate NF-κB by targeting the same pathway components and stages as are targeted by viruses. Sometimes, bacteria and parasites can hijack crucial NF-κB signalling molecules and re-appropriate them for exploitation during the pathogen's own replication cycle.

  • Although virus- and bacteria-derived molecules are remarkably diverse in structure, they often target operationally common NF-κB signalling molecules for modulation. Interestingly, a single pathogen often encodes multiple proteins to modulate the NF-κB signalling pathway at different steps, which affirms the key importance of the NF-κB pathway in combating diverse invading microbial pathogens.

Abstract

The nuclear factor-κB (NF-κB) family of transcription factors plays a central part in the host response to infection by microbial pathogens, by orchestrating the innate and acquired host immune responses. The NF-κB proteins are activated by diverse signalling pathways that originate from many different cellular receptors and sensors. Many successful pathogens have acquired sophisticated mechanisms to regulate the NF-κB signalling pathways by deploying subversive proteins or hijacking the host signalling molecules. Here, we describe the mechanisms by which viruses and bacteria micromanage the host NF-κB signalling circuitry to favour the continued survival of the pathogen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The classical and alternative NF-κB signalling pathways use a wide variety of signals to control a diverse set of cellular responses.
Figure 2: Activation of NF-κB signalling pathways by microbial pathogens.
Figure 3: Inhibition of NF-κB signalling pathways by microbial pathogens.

Similar content being viewed by others

References

  1. Hoffmann, A. & Baltimore, D. Circuitry of nuclear factor κB signaling. Immunol. Rev. 210, 171–186 (2006).

    Article  PubMed  Google Scholar 

  2. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Hayden, M. S. & Ghosh, S. Shared principles in NF-κB signaling. Cell 132, 344–362 (2008). This article summarizes the basic principles of cellular activation and inhibition of NF-κB signalling.

    Article  CAS  PubMed  Google Scholar 

  4. Finlay, B. B. & McFadden, G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124, 767–782 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Bowie, A. G. & Unterholzner, L. Viral evasion and subversion of pattern-recognition receptor signalling. Nature Rev. Immunol. 8, 911–922 (2008).

    Article  CAS  Google Scholar 

  6. Ghosh, S. & Hayden, M. S. New regulators of NF-κB in inflammation. Nature Rev. Immunol. 8, 837–848 (2008).

    Article  CAS  Google Scholar 

  7. Wan, F. & Lenardo, M. J. The nuclear signaling of NF-κB: current knowledge, new insights, and future perspectives. Cell Res. 20, 24–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Solt, L. A. & May, M. J. The IκB kinase complex: master regulator of NF-κB signaling. Immunol. Res. 42, 3–18 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hacker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13 (2006).

    Article  PubMed  Google Scholar 

  10. Chen, Z. J. Ubiquitin signalling in the NF-κB pathway. Nature Cell Biol. 7, 758–765 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Pham, A. M. & tenOever, B. R. The IKK kinases: operators of antiviral signaling. Viruses 2, 55–72 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Peters, R. T. & Maniatis, T. A new family of IKK-related kinases may function as IκB kinase kinases. Biochim. Biophys. Acta 1471, M57–M62 (2001).

    CAS  PubMed  Google Scholar 

  13. Gilmore, T. D. Introduction to NF-κB: players, pathways, perspectives. Oncogene 25, 6680–6684 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Basak, S. & Hoffmann, A. Crosstalk via the NF-κB signaling system. Cytokine Growth Factor Rev. 19, 187–197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, X. W., Tan, N. S., Ho, B. & Ding, J. L. Evidence for the ancient origin of the NF-κB/IκB cascade: its archaic role in pathogen infection and immunity. Proc. Natl Acad. Sci. USA 103, 4204–4209 (2006). This study shows that the NF-κB signalling pathway is evolutionarily conserved and plays a part in pathogen infection and immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kawai, T. & Akira, S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21, 317–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tato, C. M. & Hunter, C. A. Host-pathogen interactions: subversion and utilization of the NF-κ B pathway during infection. Infect. Immun. 70, 3311–3317 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, J. et al. NF-κB RelA subunit is crucial for early IFN-β expression and resistance to RNA virus replication. J. Immunol. 185, 1720–1729 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Hiscott, J., Nguyen, T. L., Arguello, M., Nakhaei, P. & Paz, S. Manipulation of the nuclear factor-κB pathway and the innate immune response by viruses. Oncogene 25, 6844–6867 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Oliveira, D. E., Ballon, G. & Cesarman, E. NF-κB signaling modulation by EBV and KSHV. Trends Microbiol. 18, 248–257 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Santoro, M. G., Rossi, A. & Amici, C. NF-κB and virus infection: who controls whom. EMBO J. 22, 2552–2560 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mulhern, O., Harrington, B. & Bowie, A. G. Modulation of innate immune signalling pathways by viral proteins. Adv. Exp. Med. Biol. 666, 49–63 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Rahman, M. M. & McFadden, G. Modulation of tumor necrosis factor by microbial pathogens. PLoS Pathog. 2, e4 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Unterholzner, L. & Bowie, A. G. The interplay between viruses and innate immune signaling: recent insights and therapeutic opportunities. Biochem. Pharmacol. 75, 589–602 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Sugrue, R. J. Interactions between respiratory syncytial virus and the host cell: opportunities for antivirus strategies? Expert Rev. Mol. Med. 8, 1–17 (2006).

    Article  PubMed  Google Scholar 

  26. Yoboua, F., Martel, A., Duval, A., Mukawera, E. & Grandvaux, N. Respiratory syncytial virus-mediated NF-κB p65 phosphorylation at serine 536 is dependent on RIG-I, TRAF6, and IKKβ. J. Virol. 84, 7267–7277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Choudhary, S., Boldogh, S., Garofalo, R., Jamaluddin, M. & Brasier, A. R. Respiratory syncytial virus influences NF-κB-dependent gene expression through a novel pathway involving MAP3K14/NIK expression and nuclear complex formation with NF-κB2. J. Virol. 79, 8948–8959 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kurt-Jones, E. A. et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immunol. 1, 398–401 (2000).

    Article  CAS  Google Scholar 

  29. Reimers, K., Buchholz, K. & Werchau, H. Respiratory syncytial virus M2–1 protein induces the activation of nuclear factor kappa B. Virology 331, 260–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Demarchi, F., Gutierrez, M. I. & Giacca, M. Human immunodeficiency virus type 1 Tat protein activates transcription factor NF-κB through the cellular interferon-inducible, double-stranded RNA-dependent protein kinase, PKR. J. Virol. 73, 7080–7086 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Furia, B. et al. Enhancement of nuclear factor-κB acetylation by coactivator p300 and HIV-1 Tat proteins. J. Biol. Chem. 277, 4973–4980 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Varin, A. et al. Exogenous Nef protein activates NF-κB, AP-1, and c-Jun N-terminal kinase and stimulates HIV transcription in promonocytic cells. Role in AIDS pathogenesis. J. Biol. Chem. 278, 2219–2227 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Varin, A. et al. Synthetic Vpr protein activates activator protein-1, c-Jun N-terminal kinase, and NF-κB and stimulates HIV-1 transcription in promonocytic cells and primary macrophages. J. Biol. Chem. 280, 42557–42567 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Higuchi, M. & Fujii, M. Distinct functions of HTLV-1 Tax1 from HTLV-2 Tax2 contribute key roles to viral pathogenesis. Retrovirology 6, 117 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sun, S. C. & Yamaoka, S. Activation of NF-κB by HTLV-I and implications for cell transformation. Oncogene 24, 5952–5964 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Harhaj, E. W. et al. Somatic mutagenesis studies of NF-κB signaling in human T cells: evidence for an essential role of IKKγ in NF-κB activation by T-cell costimulatory signals and HTLV-I Tax protein. Oncogene 19, 1448–1456 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Wu, X. & Sun, S. C. Retroviral oncoprotein Tax deregulates NF-κB by activating Tak1 and mediating the physical association of Tak1–IKK. EMBO Rep. 8, 510–515 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, J., Ren, T., Guan, H., Jiang, Y. & Cheng, H. HTLV-1 Tax is a critical lipid raft modulator that hijacks IκB kinases to the microdomains for persistent activation of NF-κB. J. Biol. Chem. 284, 6208–6217 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Xiao, G. et al. Retroviral oncoprotein Tax induces processing of NF-κB2/p100 in T cells: evidence for the involvement of IKKα. EMBO J. 20, 6805–6815 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, J. et al. BFV activates the NF-κB pathway through its transactivator (BTas) to enhance viral transcription. Virology 400, 215–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Gaudreault, E., Fiola, S., Olivier, M. & Gosselin, J. Epstein-Barr virus induces MCP-1 secretion by human monocytes via TLR2. J. Virol. 81, 8016–8024 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mosialos, G. et al. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80, 389–399 (1995). This study is the first to demonstrate that EBV LMP1 functions as a constitutively activated TNFR and activates the NF-κB signalling pathway.

    Article  CAS  PubMed  Google Scholar 

  43. Paine, E., Scheinman, R. I., Baldwin, A. S. Jr & Raab-Traub, N. Expression of LMP1 in epithelial cells leads to the activation of a select subset of NF-κB/Rel family proteins. J. Virol. 69, 4572–4576 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Huen, D. S., Henderson, S. A., Croom-Carter, D. & Rowe, M. The Epstein–Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-κB and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 10, 549–560 (1995).

    CAS  PubMed  Google Scholar 

  45. Wu, L., Nakano, H. & Wu, Z. The C-terminal activating region 2 of the Epstein-Barr virus-encoded latent membrane protein 1 activates NF-κB through TRAF6 and TAK1. J. Biol. Chem. 281, 2162–2169 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Luftig, M. et al. Epstein–Barr virus latent infection membrane protein 1 TRAF-binding site induces NIK/IKKα-dependent noncanonical NF-κB activation. Proc. Natl Acad. Sci. USA 101, 141–146 (2004). This study demonstrates that EBV LMP1 activates the alternative NF-κB signalling pathway.

    Article  CAS  PubMed  Google Scholar 

  47. Kung, C. P. & Raab-Traub, N. Epstein-Barr virus latent membrane protein 1 modulates distinctive NF- κB pathways through C-terminus-activating region 1 to regulate epidermal growth factor receptor expression. J. Virol. 84, 6605–6614 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bagneris, C. et al. Crystal structure of a vFlip-IKKγ complex: insights into viral activation of the IKK signalosome. Mol. Cell 30, 620–631 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Matta, H. et al. A nuclear role for Kaposi's sarcoma-associated herpesvirus-encoded K13 protein in gene regulation. Oncogene 27, 5243–5253 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Ye, F. C. et al. Kaposi's sarcoma-associated herpesvirus latent gene vFLIP inhibits viral lytic replication through NF-κB-mediated suppression of the AP-1 pathway: a novel mechanism of virus control of latency. J. Virol. 82, 4235–4249 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Punj, V. et al. Kaposi's sarcoma-associated herpesvirus-encoded viral FLICE inhibitory protein (vFLIP) K13 suppresses CXCR4 expression by upregulating miR-146a. Oncogene 29, 1835–1844 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Chung, Y. H. et al. STP-C, an oncoprotein of herpesvirus saimiri augments the activation of NF-κB through ubiquitination of TRAF6. J. Biochem. Mol. Biol. 40, 341–348 (2007).

    CAS  PubMed  Google Scholar 

  53. Cho, I. R. et al. Activation of non-canonical NF-κB pathway mediated by STP-A11, an oncoprotein of Herpesvirus saimiri. Virology 359, 37–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. de Jong, S. J., Albrecht, J. C., Schmidt, M., Muller-Fleckenstein, I. & Biesinger, B. Activation of noncanonical NF-κB signaling by the oncoprotein Tio. J. Biol. Chem. 285, 16495–16503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dong, X. et al. Murine gamma-herpesvirus 68 hijacks MAVS and IKKβ to initiate lytic replication. PLoS Pathog. 6, e1001001 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Brown, H. J. et al. NF-κB inhibits gammaherpesvirus lytic replication. J. Virol. 77, 8532–8540 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, X., Zhang, H. & Ye, L. Effects of hepatitis B virus X protein on the development of liver cancer. J. Lab. Clin. Med. 147, 58–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Bouchard, M. J. & Schneider, R. J. The enigmatic X gene of hepatitis B virus. J. Virol. 78, 12725–12734 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bui-Nguyen, T. M. et al. NF-κB signaling mediates the induction of MTA1 by hepatitis B virus transactivator protein HBx. Oncogene 29, 1179–1189 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Chang, S., Dolganiuc, A. & Szabo, G. Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins. J. Leukoc. Biol. 82, 479–487 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Rodriguez, C. I. et al. African swine fever virus IAP-like protein induces the activation of nuclear factor κB. J. Virol. 76, 3936–3942 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sciortino, M. T. et al. Involvement of HVEM receptor in activation of nuclear factor κB by herpes simplex virus 1 glycoprotein D. Cell. Microbiol. 10, 2297–2311 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, X., Fitzgerald, K., Kurt-Jones, E., Finberg, R. & Knipe, D. M. Herpesvirus tegument protein activates NF-κB signaling through the TRAF6 adaptor protein. Proc. Natl Acad. Sci. USA 105, 11335–11339 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hargett, D., Rice, S. & Bachenheimer, S. L. Herpes simplex virus type 1 ICP27-dependent activation of NF-κB. J. Virol. 80, 10565–10578 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. van Lint, A. L. et al. Herpes simplex virus immediate-early ICP0 protein inhibits Toll-like receptor 2-dependent inflammatory responses and NF-κB signaling. J. Virol. 84, 10802–10811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim, J. C. et al. HSV-1 ICP27 suppresses NF-κB activity by stabilizing IκBα. FEBS Lett. 582, 2371–2376 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Li, K. et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl Acad. Sci. USA 102, 2992–2997 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, X. D., Sun, L., Seth, R. B., Pineda, G. & Chen, Z. J. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc. Natl Acad. Sci. USA 102, 17717–17722 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abe, T. et al. Hepatitis C virus nonstructural protein 5A modulates the Toll-like receptor-MyD88-dependent signaling pathway in macrophage cell lines. J. Virol. 81, 8953–8966 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zahoor, M. A. et al. Bovine viral diarrhea virus non-structural protein 5A interacts with NIK- and IKKβ-binding protein. J. Gen. Virol. 91, 1939–1948 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Choi, S. H. et al. Hepatitis C virus nonstructural 5B protein regulates tumor necrosis factor alpha signaling through effects on cellular IκB kinase. Mol. Cell Biol. 26, 3048–3059 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Joo, M. et al. Hepatitis C virus core protein suppresses NF-κB activation and cyclooxygenase-2 expression by direct interaction with IκB kinase β. J. Virol. 79, 7648–7657 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fang, X. et al. The membrane protein of SARS-CoV suppresses NF-κB activation. J. Med. Virol. 79, 1431–1439 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Valentine, R. et al. Epstein-Barr virus-encoded EBNA1 inhibits the canonical NF-κB pathway in carcinoma cells by inhibiting IKK phosphorylation. Mol. Cancer 9, 1 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Mohamed, M. R. & McFadden, G. NFκB inhibitors: strategies from poxviruses. Cell Cycle 8, 3125–3132 (2009).This article summarizes the poxvirus modulators of NF-κB-signalling.

    Article  CAS  PubMed  Google Scholar 

  76. Harte, M. T. et al. The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J. Exp. Med. 197, 343–351 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stack, J. et al. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J. Exp. Med. 201, 1007–1018 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Graham, S. C. et al. Vaccinia virus proteins A52 and B14 Share a Bcl-2-like fold but have evolved to inhibit NF-κB rather than apoptosis. PLoS Pathog. 4, e1000128 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. DiPerna, G. et al. Poxvirus protein N1L targets the I-κB kinase complex, inhibits signaling to NF-κB by the tumor necrosis factor superfamily of receptors, and inhibits NF-κB and IRF3 signaling by Toll-like receptors. J. Biol. Chem. 279, 36570–36578 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, R. A., Ryzhakov, G., Cooray, S., Randow, F. & Smith, G. L. Inhibition of IκB kinase by vaccinia virus virulence factor B14. PLoS Pathog. 4, e22 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. McCoy, L. E., Fahy, A. S., Chen, R. A. & Smith, G. L. Mutations in modified virus Ankara protein 183 render it a non-functional counterpart of B14, an inhibitor of nuclear factor κB activation. J. Gen. Virol. 91, 2216–2220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Meng, X. et al. Vaccinia virus K1L and C7L inhibit antiviral activities induced by type I interferons. J. Virol. 83, 10627–10636 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Myskiw, C., Arsenio, J., van Bruggen, R., Deschambault, Y. & Cao, J. Vaccinia virus E3 suppresses expression of diverse cytokines through inhibition of the PKR, NF-κB, and IRF3 pathways. J. Virol. 83, 6757–6768 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Murao, L. E. & Shisler, J. L. The MCV MC159 protein inhibits late, but not early, events of TNF-α-induced NF-κB activation. Virology 340, 255–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Challa, S., Woelfel, M., Guildford, M., Moquin, D. & Chan, F. K. Viral cell death inhibitor MC159 enhances innate immunity against vaccinia virus infection. J. Virol. 84, 10467–10476 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nichols, D. B. & Shisler, J. L. Poxvirus MC160 protein utilizes multiple mechanisms to inhibit NF-κB activation mediated via components of the tumor necrosis factor receptor 1 signal transduction pathway. J. Virol. 83, 3162–3174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Diel, D. G., Delhon, G., Luo, S., Flores, E. F. & Rock, D. L. A novel inhibitor of the NF-κB signaling pathway encoded by the parapoxvirus orf virus. J. Virol. 84, 3962–3973 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tait, S. W., Reid, E. B., Greaves, D. R., Wileman, T. E. & Powell, P. P. Mechanism of inactivation of NF-κB by a viral homologue of IκBα. Signal-induced release of IκBα results in binding of the viral homologue to NF-κB. J. Biol. Chem. 275, 34656–34664 (2000). This paper describes the first viral homologue of IκBα that interacts with cellular RELA and suppresses NF-κB activation.

    Article  CAS  PubMed  Google Scholar 

  89. Zaragoza, C. et al. Viral protease cleavage of inhibitor of κBα triggers host cell apoptosis. Proc. Natl Acad. Sci. USA 103, 19051–19056 (2006). This study shows that the coxsackievirus protease directly cleaves IκBα for inhibition of the NF-κB pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Doceul, V. et al. The Npro product of classical swine fever virus interacts with IκBα, the NF-κB inhibitor. J. Gen. Virol. 89, 1881–1889 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Bour, S., Perrin, C., Akari, H. & Strebel, K. The human immunodeficiency virus type 1 Vpu protein inhibits NF-κB activation by interfering with βTrCP-mediated degradation of IκB. J. Biol. Chem. 276, 15920–15928 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Akari, H., Bour, S., Kao, S., Adachi, A. & Strebel, K. The human immunodeficiency virus type 1 accessory protein Vpu induces apoptosis by suppressing the nuclear factor κB-dependent expression of antiapoptotic factors. J. Exp. Med. 194, 1299–1311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Graff, J. W., Ettayebi, K. & Hardy, M. E. Rotavirus NSP1 inhibits NFκB activation by inducing proteasome-dependent degradation of β-TrCP: a novel mechanism of IFN antagonism. PLoS Pathog. 5, e1000280 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Yim, H. C., Li, J. C., Lau, J. S. & Lau, A. S. HIV-1 Tat dysregulation of lipopolysaccharide-induced cytokine responses: microbial interactions in HIV infection. AIDS 23, 1473–1484 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Neznanov, N. et al. Proteolytic cleavage of the p65-RelA subunit of NF-κB during poliovirus infection. J. Biol. Chem. 280, 24153–24158 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Chang, S. J. et al. Poxvirus host range protein CP77 contains an F-box-like domain that is necessary to suppress NF-κB activation by tumor necrosis factor alpha but is independent of its host range function. J. Virol. 83, 4140–4152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mohamed, M. R. et al. Proteomic screening of variola virus reveals a unique NF-κB inhibitor that is highly conserved among pathogenic orthopoxviruses. Proc. Natl Acad. Sci. USA 106, 9045–9050 (2009). This paper describes a class of poxvirus immunomodulatory proteins that inhibit the NF-κB pathway by targeting p105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rahman, M. M., Mohamed, M. R., Kim, M., Smallwood, S. & McFadden, G. Co-regulation of NF-κB and inflammasome-mediated inflammatory responses by myxoma virus pyrin domain-containing protein M013. PLoS Pathog. 5, e1000635 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Taylor, S. L., Frias-Staheli, N., Garcia-Sastre, A. & Schmaljohn, C. S. Hantaan virus nucleocapsid protein binds to importin α proteins and inhibits tumor necrosis factor α-induced activation of nuclear factor κB. J. Virol. 83, 1271–1279 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Jiao, J., Guan, H., Lippa, A. M. & Ricciardi, R. P. The N terminus of adenovirus type 12 E1A inhibits major histocompatibility complex class I expression by preventing phosphorylation of NF-κB p65 Ser276 through direct binding. J. Virol. 84, 7668–7674 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Guan, H., Jiao, J. & Ricciardi, R. P. Tumorigenic adenovirus type 12 E1A inhibits phosphorylation of NF-κB by PKAc, causing loss of DNA binding and transactivation. J. Virol. 82, 40–48 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Taylor, R. T. & Bresnahan, W. A. Human cytomegalovirus IE86 attenuates virus- and tumor necrosis factor α-induced NFκB-dependent gene expression. J. Virol. 80, 10763–10771 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jarvis, M. A. et al. Human cytomegalovirus attenuates interleukin-1β and tumor necrosis factor α proinflammatory signaling by inhibition of NF-κB activation. J. Virol. 80, 5588–5598 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Montag, C., Wagner, J., Gruska, I. & Hagemeier, C. Human cytomegalovirus blocks tumor necrosis factor α- and interleukin-1β-mediated NF-κB signaling. J. Virol. 80, 11686–11698 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nachtwey, J. & Spencer, J. V. HCMV IL-10 suppresses cytokine expression in monocytes through inhibition of nuclear factor-κB. Viral Immunol. 21, 477–482 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hansberger, M. W. et al. IκB kinase subunits α and γ are required for activation of NF-κB and induction of apoptosis by mammalian reovirus. J. Virol. 81, 1360–1371 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Clarke, P., Debiasi, R. L., Meintzer, S. M., Robinson, B. A. & Tyler, K. L. Inhibition of NF-κB activity and cFLIP expression contribute to viral-induced apoptosis. Apoptosis 10, 513–524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wilson, J. R., de Sessions, P. F., Leon, M. A. & Scholle, F. West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. J. Virol. 82, 8262–8271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lei, X. et al. Regulation of NF-κB inhibitor IκBα and viral replication by a KSHV microRNA. Nature Cell Biol. 12, 193–199 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Bhavsar, A. P., Guttman, J. A. & Finlay, B. B. Manipulation of host-cell pathways by bacterial pathogens. Nature 449, 827–834 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Naumann, M. Control of the NF-κB inhibitor IκBα in pathogen infection. Biochem. Soc. Trans. 35, 267–269 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Kvitko, B. H. et al. Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathog. 5, e1000388 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Tseng, T. T., Tyler, B. M. & Setubal, J. C. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol. 9 (Suppl. 1), S2 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Viboud, G. I. & Bliska, J. B. Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu. Rev. Microbiol. 59, 69–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Zhou, H. et al. Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-κB activation. J. Exp. Med. 202, 1327–1332 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sweet, C. R., Conlon, J., Golenbock, D. T., Goguen, J. & Silverman, N. YopJ targets TRAF proteins to inhibit TLR-mediated NF-κB, MAPK and IRF3 signal transduction. Cell. Microbiol. 9, 2700–2715 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211–1214 (2006). This study shows that YopJ acts as an acetyltransferase for acetylation of IKKα and IKKβ and blocks activation of the IKK complex.

    Article  CAS  PubMed  Google Scholar 

  118. Mittal, R., Peak-Chew, S. Y. & McMahon, H. T. Acetylation of MEK2 and IκB kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc. Natl Acad. Sci. USA 103, 18574–18579 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Fehr, D. et al. AopP, a type III effector protein of Aeromonas salmonicida, inhibits the NF-κB signalling pathway. Microbiology 152, 2809–2818 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Ye, Z., Petrof, E. O., Boone, D., Claud, E. C. & Sun, J. Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination. Am. J. Pathol. 171, 882–892 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Collier-Hyams, L. S. et al. Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-κB pathway. J. Immunol. 169, 2846–2850 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Rytkonen, A. et al. SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc. Natl Acad. Sci. USA 104, 3502–3507 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  125. Le Negrate, G. et al. Salmonella secreted factor L deubiquitinase of Salmonella typhimurium inhibits NF-κB, suppresses IκBα ubiquitination and modulates innate immune responses. J. Immunol. 180, 5045–5056 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Kim, D. W. et al. The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc. Natl Acad. Sci. USA 102, 14046–14051 (2005). This work finds that the S. flexneri T3SS effector protein OspG blocks degradation of phosphorylated IκBα by targeting the cellular ubiquitin machinery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gao, X. et al. Bacterial effector binding to ribosomal protein s3 subverts NF-κB function. PLoS Pathog. 5, e1000708 (2009). This article reports the identification of nleH genes (from EHEC) that regulate the transcriptional function of NF-κB in the nucleus by interaction with RPS3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Nobe, R. et al. Enterohaemorrhagic Escherichia coli serogroup O111 inhibits NF-κB-dependent innate responses in a manner independent of a type III secreted OspG orthologue. Microbiology 155, 3214–3225 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Malladi, V., Puthenedam, M., Williams, P. H. & Balakrishnan, A. Enteropathogenic Escherichia coli outer membrane proteins induce iNOS by activation of NF-κB and MAP kinases. Inflammation 28, 345–353 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Nadler, C. et al. The type III secretion effector NleE inhibits NF-κB activation. PLoS Pathog. 6, e1000743 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Newton, H. J. et al. The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-κB p65. PLoS Pathog. 6, e1000898 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Ashida, H. et al. A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKγ to dampen the host NF-κB-mediated inflammatory response. Nature Cell Biol. 12, 66–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Selvaraj, S. K. & Prasadarao, N. V. Escherichia coli K1 inhibits proinflammatory cytokine induction in monocytes by preventing NF-κB activation. J. Leukoc. Biol. 78, 544–554 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Kravchenko, V. V. et al. Modulation of gene expression via disruption of NF-κB signaling by a bacterial small molecule. Science 321, 259–263 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Bhattacharjee, R. N. et al. VP1686, a Vibrio type III secretion protein, induces Toll-like receptor-independent apoptosis in macrophage through NF-κB inhibition. J. Biol. Chem. 281, 36897–36904 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Betts, H. J., Wolf, K. & Fields, K. A. Effector protein modulation of host cells: examples in the Chlamydia spp. arsenal. Curr. Opin. Microbiol. 12, 81–87 (2009). This paper describes how the intracellular bacterial pathogens of the genus Chlamydia deploy multiple pathogen-encoded proteins for NF-κB regulation through multiple mechanisms.

    Article  CAS  PubMed  Google Scholar 

  137. Lad, S. P. et al. Cleavage of p65/RelA of the NF-κB pathway by Chlamydia. Proc. Natl Acad. Sci. USA 104, 2933–2938 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Le Negrate, G. et al. ChlaDub1 of Chlamydia trachomatis suppresses NF-κB activation and inhibits IκBα ubiquitination and degradation. Cell. Microbiol. 10, 1879–1892 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Wolf, K., Plano, G. V. & Fields, K. A. A protein secreted by the respiratory pathogen Chlamydia pneumoniae impairs IL-17 signaling via interaction with human Act1. Cell. Microbiol. 11, 769–779 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ge, J. et al. A Legionella type IV effector activates the NF-κB pathway by phosphorylating the IκB family of inhibitors. Proc. Natl Acad. Sci. USA 106, 13725–13730 (2009). This study shows that the bacterial pathogen Legionella pneumophila activates NF-κB signalling by encoding a Ser/Thr kinase that directly phosphorylates IκBα.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Clifton, D. R., Rydkina, E., Freeman, R. S. & Sahni, S. K. NF-κB activation during Rickettsia rickettsii infection of endothelial cells involves the activation of catalytic IκB kinases IKKα and IKKβ and phosphorylation-proteolysis of the inhibitor protein IκBα. Infect. Immun. 73, 155–165 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Abramson, T., Kedem, H. & Relman, D. A. Modulation of the NF-κB pathway by Bordetella pertussis filamentous hemagglutinin. PLoS ONE 3, e3825 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Carneiro, L. A. et al. Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells. Cell Host Microbe 5, 123–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Wells, J. M., Loonen, L. M. & Karczewski, J. M. The role of innate signaling in the homeostasis of tolerance and immunity in the intestine. Int. J. Med. Microbiol. 300, 41–48 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Iyer, C. et al. Probiotic Lactobacillus reuteri promotes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-κB and MAPK signalling. Cell. Microbiol. 10, 1442–1452 (2008).This investigation finds that probiotics downregulate NF-κB signalling pathways, enabling them to form symbiotic relationships with the host.

    Article  CAS  PubMed  Google Scholar 

  146. van Baarlen, P. et al. Differential NF kappa B pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc. Natl Acad. Sci. USA 106, 2371–2376 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Guarino, A., Lo Vecchio, A. & Canani, R. B. Probiotics as prevention and treatment for diarrhea. Curr. Opin. Gastroenterol. 25, 18–23 (2009).

    Article  PubMed  Google Scholar 

  148. Nagamatsu, K. et al. Bordetella evades the host immune system by inducing IL-10 through a type III effector, BopN. J. Exp. Med. 206, 3073–3088 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Legarda, D., Klein-Patel, M. E., Yim, S., Yuk, M. H. & Diamond, G. Suppression of NF-κB-mediated β-defensin gene expression in the mammalian airway by the Bordetella type III secretion system. Cell. Microbiol. 7, 489–497 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Depaolo, R. W. et al. Toll-like receptor 6 drives differentiation of tolerogenic dendritic cells and contributes to LcrV-mediated plague pathogenesis. Cell Host Microbe 4, 350–361 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Molestina, R. E. & Sinai, A. P. Detection of a novel parasite kinase activity at the Toxoplasma gondii parasitophorous vacuole membrane capable of phosphorylating host IκBα. Cell. Microbiol. 7, 351–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Molestina, R. E. & Sinai, A. P. Host and parasite-derived IKK activities direct distinct temporal phases of NF-κB activation and target gene expression following Toxoplasma gondii infection. J. Cell Sci. 118, 5785–5796 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Van Waes, C. Nuclear factor-κB in development, prevention, and therapy of cancer. Clin. Cancer Res. 13, 1076–1082 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Song, Y. J. & Kang, M. S. Roles of TRAF2 and TRAF3 in Epstein-Barr virus latent membrane protein 1-induced alternative NF-κB activation. Virus Genes 41, 174–180 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Brinkmann, M. M. et al. Activation of mitogen-activated protein kinase and NF-κB pathways by a Kaposi's sarcoma-associated herpesvirus K15 membrane protein. J. Virol. 77, 9346–9358 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Friedman, J. M. & Horwitz, M. S. Inhibition of tumor necrosis factor α-induced NF-κB activation by the adenovirus E3–104/14.5K complex. J. Virol. 76, 5515–5521 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Unterstab, G. et al. Viral targeting of the interferon-β-inducing Traf family member-associated NF-κB activator (TANK)-binding kinase-1. Proc. Natl Acad. Sci. USA 102, 13640–13645 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mohamed, M. R. et al. Cowpox virus expresses a novel ankyrin repeat NF-κB inhibitor that controls inflammatory cell influx into virus-infected tissues and is critical for virus pathogenesis. J. Virol. 83, 9223–9236 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Park, K. J. et al. Hepatitis C virus NS5A protein modulates c-Jun N-terminal kinase through interaction with tumor necrosis factor receptor-associated factor 2. J. Biol. Chem. 278, 30711–30718 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Mack, C., Sickmann, A., Lembo, D. & Brune, W. Inhibition of proinflammatory and innate immune signaling pathways by a cytomegalovirus RIP1-interacting protein. Proc. Natl Acad. Sci. USA 105, 3094–3099 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Spitkovsky, D., Hehner, S. P., Hofmann, T. G., Moller, A. & Schmitz, M. L. The human papillomavirus oncoprotein E7 attenuates NF-κB activation by targeting the IκB kinase complex. J. Biol. Chem. 277, 25576–25582 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Nichols, D. B. & Shisler, J. L. The MC160 protein expressed by the dermatotropic poxvirus molluscum contagiosum virus prevents tumor necrosis factor α-induced NF-κB activation via inhibition of Iκ kinase complex formation. J. Virol. 80, 578–586 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Shisler, J. L. & Jin, X. L. The vaccinia virus K1L gene product inhibits host NF-κB activation by preventing IκBα degradation. J. Virol. 78, 3553–3560 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gedey, R., Jin, X. L., Hinthong, O. & Shisler, J. L. Poxviral regulation of the host NF-κB response: the vaccinia virus M2L protein inhibits induction of NF-κB activation via an ERK2 pathway in virus-infected human embryonic kidney cells. J. Virol. 80, 8676–8685 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jones, J. O. & Arvin, A. M. Inhibition of the NF-κB pathway by varicella-zoster virus in vitro and in human epidermal cells in vivo. J. Virol. 80, 5113–5124 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Heussler, V. T. et al. Hijacking of host cell IKK signalosomes by the transforming parasite Theileria. Science 298, 1033–1036 (2002).This work demonstrates that the intracellular protozoan parasites of the genus Theileria constitutively activate the NF-κB pathway by modulating the signalling of the cellular IKK complex.

    Article  CAS  PubMed  Google Scholar 

  167. Trosky, J. E. et al. Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus. J. Biol. Chem. 279, 51953–51957 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant McFadden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, M., McFadden, G. Modulation of NF-κB signalling by microbial pathogens. Nat Rev Microbiol 9, 291–306 (2011). https://doi.org/10.1038/nrmicro2539

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrmicro2539

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology