Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Complement in the immunopathogenesis of rheumatic disease

This article has been updated

Abstract

The complement system has vital protective functions as a humoral component of the innate immune system and also through interactions with the adaptive immune system; however, when inappropriately activated or regulated, complement can cause inflammation and organ damage, and such processes are involved in the pathogenesis of many inflammatory conditions, not least rheumatic diseases. Furthermore, states of complement deficiency can predispose not only to infections, but also to autoimmune disorders, including rheumatic diseases such as systemic lupus erythematosus. In this Review, the mechanisms behind the pathogenic activities of complement in rheumatic diseases are discussed. Potential approaches to therapeutic intervention that focus on regulating complement activities in these disorders are also considered.

Key Points

  • Complement activation is involved in the pathogenesis of many rheumatic diseases

  • Deficiencies in components of the classical pathway of complement activation, but not other complement deficiencies, are associated with development of systemic lupus erythematosus (SLE) and SLE-like disorders

  • Complement activation via the alternative pathway in tissues can cause damage associated with autoimmune disease pathology

  • Increased knowledge of the functions of complement will hopefully lead to identification of new therapeutic targets in rheumatic diseases

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of complement activation and important interactions between complement components and cells.
Figure 2: Complement in the pathogenesis of SLE.
Figure 3: Complement in the pathogenesis of rheumatoid arthritis.

Similar content being viewed by others

Change history

  • 29 June 2012

    In the version of this article initially published online, Figure 1 incorrectly showed an arrow from C7 to C5b. This should have been a dashed line. The error has been corrected for the print, HTML and PDF versions of the article.

References

  1. Medof, M. E., Iida, K., Mold, C. & Nussenzweig, V. Unique role of the complement receptor CR1 in the degradation of C3b associated with immune complexes. J. Exp. Med. 156, 1739–1754 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Fearon, D. T. & Carter, R. H. The CD19/CR2/TAPA-1 complex of B-lymphocytes: linking natural to acquired immunity. Annu. Rev. Immunol. 13, 127–149 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Carroll, M. C. & Prodeus, A. P. Linkages of innate and adaptive immunity. Curr. Opin. Immunol. 10, 36–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Heeger, P. S. & Kemper, C. Novel roles of complement in T effector cell regulation. Immunobiology 217, 216–224 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Müller-Eberhard, H. J. Molecular organization and function of the complement system. Annu. Rev. Biochem. 57, 321–347 (1988).

    Article  PubMed  Google Scholar 

  6. Carroll, M. C. The lupus paradox. Nat. Genet. 19, 3–4 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Skattum, L., van Deuren, M., van der Poll, T. & Truedsson, L. Complement deficiency states and associated infections. Mol. Immunol. 48, 1643–1655 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Truedsson, L., Bengtsson, A. A. & Sturfelt, G. Complement deficiencies and systemic lupus erythematosus. Autoimmunity 40, 560–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Garred, P., Voss, A., Madsen, H. O. & Junker, P. Association of mannose-binding lectin gene variation with disease severity and infections in a population-based cohort of systemic lupus erythematosus patients. Genes Immun. 2, 442–450 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Jönsen, A. et al. Genetically determined mannan-binding lectin deficiency is of minor importance in determining susceptibility to severe infections and vascular organ damage in systemic lupus erythematosus. Lupus 16, 245–253 (2007).

    Article  PubMed  Google Scholar 

  11. Lipsker, D. M. et al. Lupus erythematosus associated with genetically determined deficiency of the second component of the complement. Arch. Dermatol. 136, 1508–1514 (2000).

    CAS  PubMed  Google Scholar 

  12. Racila, D. M. et al. Homozygous single nucleotide polymorphism of the complement C1QA gene is associated with decreased levels of C1q in patients with subacute cutaneous lupus erythematosus. Lupus 12, 124–132 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Yu, C. Y. & Whitacre, C. C. Sex, MHC and complement C4 in autoimmune diseases. Trends Immunol. 25, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Law, S. K. & Dodds, A. W. The internal thioester and the covalent binding properties of the complement proteins C3 and C4. Protein Sci. 6, 263–274 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sturfelt, G. et al. Homozygous C4A deficiency in systemic lupus erythematosus—analysis of patients from a defined population. Clin. Genet. 38, 427–433 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Davies, K. E., Peters, A. M., Beynon, H. L. & Walport, M. J. Immune complex processing in patients with systemic lupus erythematosus. In vivo imaging and clearance studies. J. Clin. Invest. 90, 2075–2083 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sturfelt, G., Nived, O. & Sjöholm, A. G. Kinetic analysis of immune complex solubilization: complement function in relation to disease activity in SLE. Clin. Exp. Rheumatol. 10, 241–247 (1992).

    CAS  PubMed  Google Scholar 

  18. Carroll, M. C. The role of complement in B cell activation and tolerance. Adv. Immunol. 74, 61–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Korb, L. C. & Ahearn, J. M. C1q binds directly and specifically to surface blebs of human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J. Immunol. 158, 4525–4528 (1997).

    CAS  PubMed  Google Scholar 

  20. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet. 19, 56–59 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Gullstrand, B., Mårtensson, U., Sturfelt, G., Bengtsson, A. A. & Truedsson, L. Complement classical pathway components are all important in clearance of apoptotic and secondary necrotic cells. Clin. Exp. Immunol. 156, 303–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamada, M. et al. Complement C1q regulates LPS-induced cytokine production in bone marrow-derived dendritic cells. Eur. J. Immunol. 34, 221–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Lood, C. et al. C1q inhibits immune-complex induced interferon-α production in plasmacytoid dendritic cells. Arthritis Rheum. 60, 3081–3090 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Lövgren, T., Eloranta, M. L., Båve, G., Alm, G. V. & Rönnblom, L. Induction of interferon-α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 50, 1861–1872 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Molina, H. Update on complement in the pathogenesis of systemic lupus erythematosus. Curr. Opin. Rheumatol. 14, 492–497 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Shlomchik, M. J. & Madaio, M. P. The role of antibodies and B cells in the pathogenesis of lupus nephritis. Springer Semin. Immunopathol. 24, 363–375 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Mostoslavsky, G. et al. Lupus anti-DNA autoantibodies cross-react with a glomerular structural protein: a case for tissue injury by molecular mimicry. Eur. J. Immunol. 31, 1221–1227 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Kalaaji, M., Sturfelt, G., Mjelle, J. E., Nossent, H. & Rekvig, O. P. Critical comparative analyses of anti-α-actinin and glomerulus-bound antibodies in human and murine lupus nephritis. Arthritis Rheum. 54, 914–926 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Kalaaji, M. et al. Glomerular apoptotic nucleosomes are central target structures for nephritogenic antibodies in human SLE nephritis. Kidney Int. 71, 664–672 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Schwartz, M. M., Korbet, S. M. & Lewis, E. J. The prognosis and pathogenesis of severe lupus glomerulonephritis. Nephrol. Dial. Transplant. 23, 1298–1306 (2008).

    Article  PubMed  Google Scholar 

  31. Sturfelt, G. & Sjöholm, A. G. Complement components, complement activation and acute phase response in systemic lupus erythematosus. Int. Arch. Allergy Appl. Immunol. 75, 75–83 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Najafi, C. C., Korbet, S. M., Schwartz, M. M., Reichlin, M. & Evans, J. Significance of histologic patterns of glomerular injury upon long-term prognosis in severe lupus glomerulonephritis. Kidney Int. 59, 2156–5163 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Sjöholm, A. G., Mårtensson, U. & Sturfelt, G. Serial analysis of autoantibody responses to the collagen-like region of Clq, collagen type II, and double stranded DNA in patients with systemic lupus erythematosus. J. Rheumatol. 24, 871–878 (1997).

    PubMed  Google Scholar 

  34. Antes, U., Heinz, H. P. & Loos, M. Evidence for the presence of autoantibodies to the collagen-like portion of C1q in systemic lupus erythematosus. Arthritis Rheum. 31, 457–464 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Trouw, L. A. & Daha, M. R. Role of anti-C1q antibodies in the pathogenesis of lupus nephritis. Expert Opin. Biol. Ther. 5, 243–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Bigler, C., Schaller, M., Perahud, I., Osthoff, M. & Trendelenburg, M. Autoantibodies against complement C1q specifically target C1q bound on early apoptotic cells. J. Immunol. 183, 3512–3521 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Trouw, L. A., Seelen, M. A. & Daha, M. R. Complement and renal disease. Mol. Immunol. 40, 125–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Pickering, M. C. et al. Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat. Genet. 31, 424–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Nielsen, C. T. et al. Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation. Arthritis Rheum. 64, 1227–1236 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Yousefi, S., Mihalache, C., Kozlowski, E., Schmid, I. & Simon, H. U. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 16, 1438–1444 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Hakkim, A. et al. Impairment of neutrophil trap degradation is associated with lupus nephritis. Proc. Natl Acad. Sci. USA 107, 9813–9818 (2010).

    Article  PubMed  Google Scholar 

  42. Hom, G. et al. Association of systemic lupus erythematosus with C8orf13BLK and ITGAMITGAX. N. Engl. J. Med. 358, 900–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jacob, H. S., Craddock, P. R., Hammerschmidt, D. E. & Moldow, C. F. Complement-induced granulocyte aggregation: an unsuspected mechanism of disease. N. Engl. J. Med. 302, 789–794 (1980).

    Article  CAS  PubMed  Google Scholar 

  45. Abrahamson, S. B., Given, W. P., Edelson, H. S. & Weissmann, G. Neutrophil aggregation induced by sera from patients with active systemic lupus erythematosus. Arthritis Rheum. 26, 630–636 (1983).

    Article  Google Scholar 

  46. Karpman, D. & Kahn, R. The contact/kinin and complement systems in vasculitis. APMIS Suppl. 127, 48–54 (2009).

    Article  CAS  Google Scholar 

  47. Ghiran, I. C. et al. Systemic lupus erythematosus serum deposits C4d on red blood cells, decreases red blood cell membrane deformability and promotes nitric oxide production. Arthritis Rheum. 63, 503–512 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gewurz, H., Ying, S. C., Jiang, H. & Lint, T. F. Nonimmune activation of the classical complement pathway. Behring Inst. Mitt. 93, 138–147 (1993).

    CAS  Google Scholar 

  49. Sjöwall, C. et al. Solid-phase classical complement activation by C-reactive protein (CRP) is inhibited by fluid-phase CRP-C1q interaction. Biochem. Biophys. Res. Commun. 352, 251–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Rodriguez, W. et al. Prevention and reversal of nephritis in MRL/lpr mice with a single injection of C-reactive protein. Arthritis Rheum. 54, 325–335 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Carlucci, F., Cool, H. T., Garg, A., Pepys, M. B. & Botto, M. Lack of effect of a single injection of human C-reactive protein on murine lupus or nephrotoxic nephritis. Arthritis Rheum. 62, 245–249 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Lim, W. Complement and the antiphospholipid syndrome. Curr. Opin. Hematol. 18, 361–365 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Holers, V. M. et al. Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J. Exp. Med. 21, 211–220 (2002).

    Article  Google Scholar 

  54. Jönsson, G. et al. Rheumatological manifestations, organ damage and autoimmunity in hereditary C2 deficiency. Rheumatology (Oxford) 46, 1133–1139 (2007).

    Article  CAS  Google Scholar 

  55. Welch, T. R., Frenzke, M., Witte, D. & Davis, A. E. 3rd. C5a is important in the tubulointerstitial component of experimental immune complex glomerulonephritis. Clin. Exp. Immunol. 130, 43–48 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bao, L., Haas, M. & Quigg, R. J. Complement factor H deficiency accelerates development of lupus nephritis. J. Am. Soc. Nephrol. 22, 285–295 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jönsen, A. et al. Mutations in genes encoding complement inhibitors CD46 and CFH affect the age at nephritis onset in patients with systemic lupus erythematosus. Arthritis Res. Ther. 13, R206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Burnham, T. K., Neblett, T. R. & Fine, G. The application of the fluorescent antibody technic to the investigation of lupus erythematosus and various dermatoses. J. Invest. Dermatol. 41, 451–456 (1963).

    Article  CAS  PubMed  Google Scholar 

  59. Casciola-Rosen, L. & Rosen, A. Ultraviolet light-induced keratinocyte apoptosis: a potential mechanism for the induction of skin lesions and autoantibody production in LE. Lupus 6, 175–180 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Tveita, A. A., Ninomiya, Y., Sado, Y., Rekvig, O. P. & Zykova, S. N. Development of lupus nephritis is associated with qualitative changes in the glomerular collagen IV matrix composition. Lupus 18, 355–360 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Petri, M., Watson, R., Winkelstein, J. A. & McLean, R. H. Clinical expression of systemic lupus erythematosus in patients with C4A deficiency. Medicine (Baltimore) 72, 236–244 (1993).

    Article  CAS  Google Scholar 

  62. Sturfelt, G., Sjöholm, A. G. & Svensson, B. Complement components, C1 activation and disease activity in SLE. Int. Arch. Allergy Appl. Immunol. 70, 12–18 (1983).

    Article  CAS  PubMed  Google Scholar 

  63. Zadura, F. A., Theander, E., Blom, A. M. & Trouw, L. A. Complement inhibitor C4b-binding protein in primary Sjögren's syndrome and its association with other disease markers. Scand. J. Immunol. 69, 374–380 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Ghererdi, R. K. Pathogenic aspects of dermatomyositis, polymyositis and overlap myositis. Presse Med. 40, 209–218 (2011).

    Article  Google Scholar 

  65. Scambi, C. et al. Comparative proteomic analysis of serum from patients with systemic sclerosis and sclerodermatous GVHD. Evidence of defective function of factor H. PLoS One 5, e12162 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Trouw, L. A. et al. Genetic variants of C1q are a risk for rheumatoid arthritis. Ann. Rheum. Dis. 70 (Suppl. 2), A17 (2011).

    Article  Google Scholar 

  67. Hedberg, H. The depressed synovial complement activity in adult and juvenile rheumatoid arthritis. Acta Rheum. Scand. 10, 109–127 (1964).

    Article  CAS  PubMed  Google Scholar 

  68. Pekin, T. J. Jr & Zvaifler, N. J. Hemolytic complement in synovial fluid Clin. Invest. 43, 1372–1382 (1964).

    Article  CAS  Google Scholar 

  69. Hedberg, H., Lundh, B. & Laurell, A. B. Studies on the third component of complement in synovial fluid from arthritic patients. II. Conversion and its relation to total complement. Clin. Exp. Immunol. 6, 707–712 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sjöholm, A. G., Berglund, K., Johnson, U., Laurell, A. B. & Sturfelt, G. C1 activation, with C1q in excess of functional C1 in synovial fluid from patients with rheumatoid arthritis. Int. Arch. Allergy Appl. Immunol. 79, 113–119 (1986).

    Article  PubMed  Google Scholar 

  71. Okroj, M., Heinegård, D., Holmdahl, R. & Blom, A. M. Rheumatoid arthritis and the complement system. Ann. Med. 39, 517–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Nandakumar, K. S. et al. A recombinant vaccine effectively induces C5a-specific neutralizing antibodies and prevents arthritis. PLoS One 5, e13511 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Konttinen, Y. T. et al. Complement in acute and chronic arthritides: assessment of C3c, C9 and protectin (CD59) in synovial membrane. Ann. Rheum. Dis. 55, 888–894 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jahn, B., von Kempis, J., Krämer, K. L., Filsinger, S. & Hänsch, G. M. Interaction of the terminal complement components C5b–9 with synovial fibroblasts: binding to the membrane surface leads to increased levels in collagenase-specific mRNA. Immunology 78, 329–334 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Banda, N. K. et al. Role of C3a receptors, C5a receptors, and complement protein C6 deficiency in collagen antibody-induce arthrits in mice. J. Immunol. 188, 1469–1478 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Berckmans, R. J. et al. Cell-derived microparticles in synovial fluid from inflamed arthritic joints support coagulation exclusively via a factor XII-dependent mechanism. Arthritis Rheum. 46, 2857–2866 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Berglund, K., Laurell, A. B., Nived, O., Sjöholm, A. G. & Sturfelt, G. Complement activation, circulating C1q binding substances and inflammatory activity in rheumatoid arthritis: relations and changes on suppression of inflammation. J. Clin. Lab. Immunol. 4, 7–14 (1980).

    CAS  PubMed  Google Scholar 

  78. Brodeur, J. P., Ruddy, S., Schwartz, L. B. & Moxley, G. Synovial fluid levels of complement SC5b-9 and fragment Bb are elevated in patients with rheumatoid arthritis. Arthritis Rheum. 34, 1531–1537 (1991).

    Article  CAS  PubMed  Google Scholar 

  79. Hermansson, M. et al. MS analysis of rheumatoid arthritic synovial tissue identifies specific citrullination sites on fibrinogen. Proteomics Clin. Appl. 4, 511–518 (2010).

    CAS  PubMed  Google Scholar 

  80. Trouw, L. A. et al. Anti-cyclic citrullinated peptide antibodies from rheumatoid arthritis patient activate complement via both the classical and the alternative pathways. Arthritis Rheum. 60, 1923–1931 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Hanauske-Abel, H. M., Pontz, B. F. & Schorlemmer, H. U. Cartilage specific collagen activates macrophages and the alternative pathway of complement: evidence of an immunopathogenetic concept of rheumatoid arthritis. Ann. Rheum. Dis. 41, 168–176 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schaapherder, A. F., Gooszen, H. G., te Bulte, M. T. & Daha, M. R. Human complement activation via the alternative pathway on porcine endothelium initiated by IgA antibodies. Transplantation 60, 287–291 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Kilpatrick, D. C. Mannan-binding lectin and its role in innate immunity. Transfus. Med. 12, 335–352 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Sjöberg, A., Önnerfjord, P., Mörgelin, M., Heinegård, D. & Blom, A. M. The extracellular matrix and inflammation: fibromodulin activates the classical pathway of complement by directly binding C1q. J. Biol. Chem. 280, 32301–32308 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Happonen, K. E., Sjöberg, A. P., Mörgelin, M., Heinegård, D. & Blom, A. M. Complement inhibitor C4b-binding protein interacts directly with small glycoproteins of the extracellular matrix. J. Immunol. 182, 1518–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Groeneveld, T. W. et al. Interactions of the extracellular matrix proteoglycans decorin and biglycan with C1q and collectins. J. Immunol. 175, 4715–4723 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Happonen, K. E. et al. Regulation of complement by cartilage oligomeric matrix protein (COMP) allows for a novel molecular diagnostic principle in rheumatoid arthritis. Arthritis Rheum. 62, 3574–3583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Turesson, C. & Matteson, E. L. Vasculitis in rheumatoid arthritis. Curr. Opin. Rheumatol. 21, 35–40 (2009).

    Article  PubMed  Google Scholar 

  89. Geirsson, A. J., Sturfelt, G. & Truedsson, L. Clinical and serological features of severe vasculitis in rheumatoid arthritis: prognostic implications. Ann. Rheum. Dis. 46, 727–733 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang, Q. et al. Identification of a central role for complement in osteoarthritis. Nat. Med. 17, 1674–1679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xiao, H. et al. Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am. J. Pathol. 170, 52–64 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schreiber, A. et al. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J. Am. Soc. Nephrol. 20, 289–298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huugen, D. et al. Inhibition of complement factor C5 protects against anti-myeloperoxidase antibody-mediated glomerulonephritis in mice. Kidney Int. 71, 646–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Kose, A. A. Direct immunofluorescence in Behçet's disease: a controlled study with 108 cases. Yonsei Med. J. 50, 505–511 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Mårtensson, U., Sjöholm, A. G., Sturfelt, G., Truedsson, L. & Laurell, A. B. Western blot analysis of human IgG reactive with the collagenous portion of C1q: evidence of distinct binding specificities. Scand. J. Immunol. 35, 735–744 (1992).

    Article  PubMed  Google Scholar 

  96. Mehregan, D. R. & Gibson, L. E. Pathophysiology of urticarial vasculitis. Arch. Dermatol. 134, 88–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Emlen, W., Li, W. & Kirschfink, M. Therapeutic complement inhibition: new developments. Semin. Thromb. Hemost. 36, 660–668 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Longhurst, H. & Cicardi, M. Hereditary angio-oedema. Lancet 379, 474–481 (2012).

    Article  PubMed  Google Scholar 

  99. Garred, P. et al. Mannose-binding lectin (MBL) therapy in an MBL-deficient patient with severe cystic fibrosis lung disease. Pediatr. Pulmonol. 33, 201–207 (2002).

    Article  PubMed  Google Scholar 

  100. Mehta, P. et al. SLE with C1q deficiency treated with fresh frozen plasma: a 10-year experience. Rheumatology (Oxford) 49, 823–824 (2010).

    Article  Google Scholar 

  101. Steinsson, K., Erlendsson, K. & Valdimarsson, H. Successful plasma infusion treatment of a patient with C2 deficiency and systemic lupus erythematosus: clinical experience over forty-five months. Arthritis Rheum. 32, 906–913 (1989).

    CAS  PubMed  Google Scholar 

  102. Weisman, H. F. et al. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science 249, 146–151 (1990).

    Article  CAS  PubMed  Google Scholar 

  103. Jennette, J. C., Xiao, H., Falk, R. & Gasim, A. M. Experimental models of vasculitis and glomerulonephritis induced by antineutrophil cytoplasmic antibodies. Contrib. Nephrol. 169, 211–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Macor, P. et al. Treatment of arthritis models by targeting synovial endothelium with a neutralizing recombinant antibody to C5. Arthritis Rheum. http://dx.doi.org/10.1002/art.34430.

  105. Kolla, R. V. et al. Complement C3d conjugation to anthrax protective antigen promotes a rapid, sustained, and protective antibody response. PLoS One 2, e1044 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wu, Y. L., Brookshire, B. P., Verani, R. R., Arnett, F. C. & Yu, C. Y. Clinical presentations and molecular basis of complement C1r deficiency in a male African-American patient with systemic lupus erythematosus. Lupus 20, 1126–1134 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Fijen, C. A. et al. Properdin deficiency: molecular basis and disease association. Mol. Immunol. 36, 863–867 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Witzel-Schlömp, K. et al. Heterogeneity in the genetic basis of human complement C9 deficiency. Immunogenetics 48, 144–147 (1998).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G. Sturfelt and L. Truedsson contributed equally to researching data for the article, discussions of the content, writing the article and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Gunnar Sturfelt.

Ethics declarations

Competing interests

G. Sturfelt has acted as a consultant for Active Biotech. L. Truedsson declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturfelt, G., Truedsson, L. Complement in the immunopathogenesis of rheumatic disease. Nat Rev Rheumatol 8, 458–468 (2012). https://doi.org/10.1038/nrrheum.2012.75

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.75

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing