Abstract
The sterile alpha motif (SAM) domain is a novel protein module of ~70 amino acids that is found in a variety of signaling molecules including tyrosine and serine/threonine protein kinases, cytoplasmic scaffolding and adaptor proteins, regulators of lipid metabolism, and GTPases as well as members of the ETS family of transcription factors. The SAM domain can potentially function as a protein interaction module through the ability to homo– and hetero–oligomerize with other SAM domains. This functional property elicits the oncogenic activation of chimeric proteins arising from translocation of the SAM domain of TEL to coding regions of the βPDGF receptor, Abl, JAK2 protein kinase and the AML1 transcription factor. Here we describe the 2.0 Å X–ray crystal structure of a SAM domain homodimer from the intracellular region of the EphA4 receptor tyrosine kinase. The structure reveals a mode of dimerization that we predict is shared amongst the SAM domains of the Eph receptor tyrosine kinases and possibly other SAM domain containing proteins. These data indicate a mechanism through which an independently folding protein module can form homophilic complexes that regulate signaling events at the membrane and in the nucleus.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Accession codes
References
Henkemeyer, M. et al. Cell 86, 35–46 (1996).
Orioli, D., Henkemeyer, M., Lemke, G., Klein, R. & Pawson, T. EMBO J. 15, 6035–6049 (1996).
Krull, C.E. et al. Curr. Biol. 7, 571– 580 (1997).
Xu, Q., Alldus, G., Macdonald, R., Wilkinson, D.G. & Holder, N. Nature 381, 319–322 (1996).
Wang, H.U., Chen, Z.F. & Anderson, D.J. Cell 93, 741– 753 (1998).
Stein, E. et al. Genes Dev. 12, 667–678 (1998).
Lackmann, M. et al. J. Biol. Chem. 272, 16521– 16530 (1997).
Davis, S. et al. Science 266, 816–819 (1994).
Lackmann, M. et al. J. Biol. Chem. 273, 20228– 20237 (1998).
Hock, B. et al. Proc. Natl. Acad. Sci. USA 95, 9779– 9784 (1998).
Ponting, C.P. Prot. Sci. 4, 1928–1930 (1995).
Schultz, J., Ponting, C.P., Hofmann, K. & Bork, P. Prot. Sci 6, 249–253 (1997).
Klambt, C. Development 117, 163–176 (1993).
Jousset, C. et al. EMBO J. 16, 69–82 (1997).
Peterson, A.J. et al. Mol. Cell. Biol. 17, 6683– 6692 (1997).
Kyba, M. & Brock, H.W. Dev. Genet. 22, 74–84 (1998).
Tu, H., Barr, M., Dong, D.L. & Wigler, M. Mol. Cell. Biol. 17, 5876–5887 (1997).
Serra–Pages, C., Medley, Q.G., Tang, M., Hart, A. & Streuli, M. J. Biol. Chem. 273, 15611– 15620 (1998).
Golub, T.R., Barker, G.F., Lovett, M. & Gilliland, D.G. Cell 77, 307–316 (1994).
Golub, T.R. et al. Mol. Cell. Biol. 16, 4107– 4116 (1996).
Lacronique, V. et al. Science 278, 1309– 1312 (1997).
Golub, T.R. et al. Proc. Natl. Acad. Sci. USA 92, 4917–4921 (1995).
Stein, E., Cerretti, D.P. & Daniel, T.O. J. Biol. Chem. 271, 23588– 23593 (1996).
Slupsky, C.M. et al. Proc. Natl. Acad. Sci. USA 95, 12129–12134 (1998).
Kuriyan, J. & Cowburn, D. Annu. Rev. Biophys. Biomol. Struct. 26, 259–288 (1997).
Terwilliger, T.C., Kim, S.H. & Eisenberg, D. Acta Crytallogr. A 43, 1– 5 (1987).
Furey, W. & Swaminathan, S. In American crystallographic association meeting abstracts 73 (1990).
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A47, 110–119 (1991).
Brünger, A.T. X–PLOR (version 3.1) manual. (Yale University, New Haven, Connecticut; 1992).
Carson, M. J. Appl. Crystallgr. 24, 958 (1991).
Nicholls, A., Sharp, K.A. & Honig, B. Proteins Struct. Funct. Genet. 11, 281–296 (1991).
Brünger, A.T. J. Mol. Biol. 203, 803–816 (1988).
Acknowledgements
We thank N. Gale for the EphA4 receptor cDNA, C. Hogue and K. Miyata for insightful discussions and A. Chakrabartty and A. Davidson for assistance with analytical centrifugation. This work was supported by the Medical Research Council of Canada (T.P) and the National Cancer Institute of Canada (F.S). D.S. is a C. J. Martin Fellow of the National Health and Medical Research Council of Australia and T.P. is a Distinguished Scientist of the Medical Research Council of Canada.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Stapleton, D., Balan, I., Pawson, T. et al. The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization . Nat Struct Mol Biol 6, 44–49 (1999). https://doi.org/10.1038/4917
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/4917
This article is cited by
-
Targeting EphA2: a promising strategy to overcome chemoresistance and drug resistance in cancer
Journal of Molecular Medicine (2024)
-
The miR-378c-Samd1 circuit promotes phenotypic modulation of vascular smooth muscle cells and foam cells formation in atherosclerosis lesions
Scientific Reports (2021)
-
Identification of a novel EphB4 phosphodegron regulated by the autocrine IGFII/IRA axis in malignant mesothelioma
Oncogene (2019)
-
Eph receptor signalling: from catalytic to non-catalytic functions
Oncogene (2019)
-
Plasmodium pseudo-Tyrosine Kinase-like binds PP1 and SERA5 and is exported to host erythrocytes
Scientific Reports (2019)


