Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The leukemia-associated AML1 (Runx1)–CBFβ complex functions as a DNA-induced molecular clamp

Abstract

We have determined the structure, at 2.6 Å resolution, of the AML1 (Runx1) Runt domain–CBFβ–DNA ternary complex, the most common target for mutations in human leukemia. The structure reveals that the Runt domain DNA binding mechanism is unique within the p53 family of transcription factors. The extended C-terminal 'tail' and 'wing' elements adopt a specific DNA-bound conformation that clamps the phosphate backbone between the major and minor grooves of the distorted B-form DNA recognition site. Furthermore, the extended 'tail' mediates most of the NF-κB/Rel-like base-specific contacts in the major groove. The structure clearly explains the molecular basis for the loss of DNA binding function of the Runt domain–CBFβ complex as a consequence of the human disease-associated mutations in leukemogenesis and cleidocranial dysplasia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the AML1 Runt domain–CBFβ–DNA ternary complex.
Figure 2: DNA recognition mechanism.
Figure 3: DNA-induced ordering of the 'tail' and 'wing'.
Figure 4: In vitro DNA binding assays.
Figure 5: Rel/NFκB-like DNA contacts by the Runt domain.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kagoshima, H. et al. The Runt domain identifies a new family of heteromeric transcriptional regulators. Trends Genet. 9, 338–341 (1993).

    Article  CAS  Google Scholar 

  2. Speck, N.A. & Stacy, T. In Critical reviews in eukaryotic gene expression. (eds, Stein, G.S., Stein, J. & Lian, J.B.) 337–364 (Begell House, Inc., New York; 1995).

    Google Scholar 

  3. Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G. & Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996).

    Article  CAS  Google Scholar 

  4. Wang, Q. et al. The CBFβ subunit is essential for CBFα2 (AML1) function in vivo. Cell 87, 697–708 (1996).

    Article  CAS  Google Scholar 

  5. Rubnitz, J.E. & Look, A.T. Molecular basis of leukemogenesis. Curr. Opin. Hematol. 5, 264–270 (1998).

    Article  CAS  Google Scholar 

  6. Miyoshi, H. et al. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc. Natl. Acad. Sci. USA 88, 10431–10434 (1991).

    Article  CAS  Google Scholar 

  7. Look, A.T. Oncogenic transcription factors in the human acute leukemias. Science 278, 1059–1065 (1997).

    Article  CAS  Google Scholar 

  8. Liu, P. et al. Fusion between transcription factor CBFβ/PEBP2β and a myosin heavy chain in acute myeloid leukemia. Science 261, 1041–1044 (1993).

    Article  CAS  Google Scholar 

  9. Osato, M. et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2αB gene associated with myeloblastic leukemias. Blood 93, 1817–1824 (1999).

    CAS  PubMed  Google Scholar 

  10. Preudhomme, C. et al. High incidence of biallelic point mutations in the runt domain of the AML1/PEBP2αB gene in Mo acute myeloid leukemia and in myeloid malignancies with acquired trisomy 21. Blood 96, 2862–2869 (2000).

    CAS  PubMed  Google Scholar 

  11. Imai, Y. et al. Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. Blood 96, 3154–3160 (2000).

    CAS  PubMed  Google Scholar 

  12. Song, W.J. et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukemia. Nature Genet. 23, 166–175 (1999).

    Article  CAS  Google Scholar 

  13. Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755–764 (1997).

    Article  CAS  Google Scholar 

  14. Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765–771 (1997).

    Article  CAS  Google Scholar 

  15. Mundlos, S. et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89, 773–779 (1997).

    Article  CAS  Google Scholar 

  16. Thornell, A., Hallberg, B. & Grundström, T. Binding of SL3-3 enhancer factor 1 transcriptional activators to viral and chromosomal enhancer sequences. J. Virol. 65, 42–50 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rodan, G.A. & Harada, S. The missing bone. Cell 89, 677–680 (1997).

    Article  CAS  Google Scholar 

  18. Goger, M. et al. Molecular insights into PEBP2/CBFβ–SMMHC associated acute leukemia revealed from the structure of PEBP2/CBFβ. Nature Struct. Biol. 6, 620–623 (1999).

    Article  CAS  Google Scholar 

  19. Huang, X., Peng, J.W., Speck, N.A. & Bushweller, J.H. Solution structure of core binding factor β and map of the CBFα binding site. Nature Struct. Biol. 6, 624–627 (1999).

    Article  CAS  Google Scholar 

  20. Nagata, T. et al. Immunoglobulin motif DNA recognition and heterodimerization of the PEBP2/CBF Runt domain. Nature Struct. Biol. 6, 615–619 (1999).

    Article  CAS  Google Scholar 

  21. Berardi, M.J. et al. The Ig fold of the core binding factor α Runt domain is a member of a family of structurally and functionally related Ig-fold DNA-binding domains. Structure Fold. Des. 7, 1247–1256 (1999).

    Article  CAS  Google Scholar 

  22. Warren, A.J., Bravo, J., Williams, R.L. & Rabbitts, T.H. Structural basis for the heterodimeric interaction between the acute leukemia-associated transcription factors AML1 and CBFβ. EMBO J. 19, 3004–3015 (2000).

    Article  CAS  Google Scholar 

  23. Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995).

    CAS  Google Scholar 

  24. Tang, Y.Y. et al. Energetic and functional contribution of residues in the core binding factor β (CBFβ) subunit to heterodimerization with CBFα. J. Biol. Chem. 275, 39579–39588 (2000).

    Article  CAS  Google Scholar 

  25. Tang, Y.Y. et al. Biophysical characterization of interactions between the core binding factor α and β subunits and DNA. FEBS Lett. 470, 167–172 (2000).

    Article  CAS  Google Scholar 

  26. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  27. Perez-Alvarado, G.C., Munnerlyn, A., Dyson, H.J., Grosschedl, R. & Wright, P.E. Identification of the regions involved in DNA binding by the mouse PEBP2α protein. FEBS Lett. 470, 125–130 (2000).

    Article  CAS  Google Scholar 

  28. Nekludova, L. & Pabo, C.O. Distinctive DNA conformation with enlarged major groove is found in Zn finger–DNA and other protein–DNA complexes. Proc. Natl. Acad. Sci. USA 91, 6948–6952 (1994).

    Article  CAS  Google Scholar 

  29. Wolf-Watz, M., Xie, X.Q., Holm, M., Grundström, T. & Härd, T. Solution properties of the free and DNA-bound Runt domain of AML1. Eur. J. Biochem. 261, 251–260 (1999).

    Article  CAS  Google Scholar 

  30. Crute, B.E., Lewis, A.F., Wu, Z., Bushweller, J.H. & Speck, N.A. Biochemical and biophysical properties of the core-binding factor α2 (AML1) DNA-binding domain. J. Biol. Chem. 271, 26251–26260 (1996).

    Article  CAS  Google Scholar 

  31. Lenny, N., Meyers, S. & Hiebert, S.W. Functional domains of the t(8;21) fusion protein, AML-1/ETO. Oncogene 11, 1761–1769 (1995).

    CAS  PubMed  Google Scholar 

  32. Akamatsu, Y., Tsukumo, S., Kagoshima, H., Tsurushita, N. & Shigesada, K. A simple screening for mutant DNA binding proteins: application to murine transcription factor PEBP2α subunit, a founding member of the Runt domain protein family. Gene 185, 111–117 (1997).

    Article  CAS  Google Scholar 

  33. Lee, B. et al. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nature Genet. 16, 307–310 (1997).

    Article  CAS  Google Scholar 

  34. Cho, Y., Gorina, S., Jeffrey, P.D. & Pavletich, N.P. Crystal structure of a p53 tumor suppressor–DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).

    Article  CAS  Google Scholar 

  35. Zhou, G. et al. CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia. Hum. Mol. Genet. 8, 2311–2316 (1999).

    Article  CAS  Google Scholar 

  36. Quack, I. et al. Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia. Am. J. Hum. Genet. 65, 1268–1278 (1999).

    Article  CAS  Google Scholar 

  37. Thornell, A., Hallberg, B. & Grundström, T. Differential protein binding in lymphocytes to a sequence in the enhancer of the mouse retrovirus SL3-3. Mol. Cell. Biol. 8, 1625–1637 (1988).

    Article  CAS  Google Scholar 

  38. Wang, S.W. & Speck, N.A. Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers. Mol. Cell. Biol. 12, 89–102 (1992).

    Article  CAS  Google Scholar 

  39. Melnikova, I.N., Crute, B.E., Wang, S. & Speck, N.A. Sequence specificity of the core-binding factor. J. Virol. 67, 2408–2411 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Golling, G., Li, L., Pepling, M., Stebbins, M. & Gergen, J.P. Drosophila homologs of the proto-oncogene product PEBP2/CBFβ regulate the DNA-binding properties of Runt. Mol. Cell. Biol. 16, 932–942 (1996).

    Article  CAS  Google Scholar 

  41. Zhang, Y.W. et al. PEBP2αA/CBFA1 mutations in Japanese cleidocranial dysplasia patients. Gene 244, 21–28 (2000).

    Article  CAS  Google Scholar 

  42. Werner, M.H., Shigesada, K. & Ito, Y. Runt domains take the lead in hematopoiesis and osteogenesis [news]. Nature Med. 5, 1356–1357 (1999).

    Article  CAS  Google Scholar 

  43. Müller, C.W. & Herrmann, B.G. Crystallographic structure of the T domain–DNA complex of the Brachyury transcription factor. Nature 389, 884–888 (1997).

    Article  Google Scholar 

  44. Cramer, P., Varrot, A., Barillas-Mury, C., Kafatos, F.C. & Müller, C.W. Structure of the specificity domain of the Dorsal homologue Gambif1 bound to DNA. Structure Fold. Des. 7, 841–852 (1999).

    Article  CAS  Google Scholar 

  45. Müller, C.W. Transcription factors: global and detailed views. Curr. Opin. Struct. Biol. 11, 26–32 (2001).

    Article  Google Scholar 

  46. Leslie, A.G.W. Recent changes to the MOSFLM package for film and image plate data. in Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography 26 (Daresbury Laboratory, Warrington, UK; 1992).

    Google Scholar 

  47. CCP4. Collaborative Computing Project 4: A suite of programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  48. Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  49. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  50. Schiestl, R.H. & Gietz, R.D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16, 339–346 (1989).

    Article  CAS  Google Scholar 

  51. Esnouf, RM. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  52. Kraulis, P.J. A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  53. Chen, Y.Q., Sengchanthalangsy, L.L., Hackett, A. & Ghosh, G. NF-κB p65 (RelA) homodimer uses distinct mechanisms to recognize DNA targets. Structure Fold. Des. 8, 419–428 (2000).

    Article  CAS  Google Scholar 

  54. Chen, L., Glover, J.N., Hogan, P.G., Rao, A. & Harrison, S.C. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392, 42–48 (1998).

    Article  CAS  Google Scholar 

  55. Lu, X.J., Shakked, Z. & Olson, W.K. A-form conformational motifs in ligand-bound DNA structures. J. Mol. Biol. 300, 819–840 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Arzt for help with data collection at ESRF beamline ID14-3; R. Williams for invaluable assistance; S.A. Islam and M.J.E. Sternberg (ICRF) for the program PREPI; J. Bushweller and H. Kanegane for sharing unpublished data; C. Müller for the preprint of his review; D. Rhodes, A. Murzin, D. Neuhaus and A. Travers for helpful discussions. A.J.W. is supported by an MRC Senior Clinical Fellowship. N.A.S. is supported by Public Health Service grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Warren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravo, J., Li, Z., Speck, N. et al. The leukemia-associated AML1 (Runx1)–CBFβ complex functions as a DNA-induced molecular clamp. Nat Struct Mol Biol 8, 371–378 (2001). https://doi.org/10.1038/86264

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/86264

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing