Abstract
We report the 1.8 Å crystal structure of adenosine triphosphate (ATP)–magnesium–oxalate bound phosphoenolpyruvate carboxykinase (PCK) from Escherichia coli. ATP binding induces a 20° hinge-like rotation of the N- and C-terminal domains which closes the active-site cleft. PCK possesses a novel nucleotide-binding fold, particularly in the adenine-binding region, where the formation of a cis backbone torsion angle in a loop glycine residue promotes intimate contacts between the adenine-binding loop and adenine, while stabilizing a syn conformation of the base. This complex represents a reaction intermediate analogue along the pathway of the conversion of oxaloacetate to phosphoenolpyruvate, and provides insight into the mechanistic details of the chemical reaction catalysed by this enzyme.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Utter, M.F. & Kolenbrander, H.M. X CO2 fixation on phosphoenolpyruvate. In The Enzymes (Boyer, P. D. ed.), 6, 117–168 (1972).
Williamson, J.R. Effects of fatty acids, glucagon, and anti-insulin serum on the control of gluconeogenesis and ketogenesis in rat liver. Adv. Enzyme Regul. 5, 229–254 (1967).
Valera, A., Pujol, A., Pelegrin, M. & Bosch, F. Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non- insulin-dependent diabetes mellitus. Proc. Natl. Acad. Sci. USA 91, 9151–9154 (1994).
Hanson, R.W. & Patel, Y.M. Phosphoenolpyruvate carboxykinase (GTP): the gene and the enzyme. Adv. Enzymol. 68, 203–281 (1994).
Jomain-Baum, M. & Schramm, V.L. Kinetic mechanism of phosphoenolpyruvate carboxykinase (GTP) from rat liver cytosol. J. Biol. Chem. 253, 3648–3659 (1978).
Krebs, A. & Bridger, W.A. The kinetic properties of . phosphoenolpyruvate carboxykinase of Escherichia coli. Can. J. Biochem. 58, 309–318 (1980).
Chen, C., Sato, Y. & Schramm, V.L. Isotope trapping and positional isotope exchange with rat and chicken liver phosphoenolpyruvate carboxykinases. Biochemistry 30, 4143–4151 (1991).
Malebrán, L.P. & Cardemil, E. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae. Biochim. Biophys. Acta 915, 385–392 (1987).
Makinen, A.L. & Nowak, T. A reactive cysteine in avian liver phosphoenolpyruvate carboxykinase. J. Biol. Chem. 264, 12148–12157 (1989).
Cheng, K. & Nowak, T. A histidine residue at the active site of avian liver phosphoenolpyruvate carboxykinase. J. Biol. Chem. 264, 19666–19676 (1989).
Guidinger, P.P. & Nowak, T. An active site lysine in avain liver phosphoenolpyruvate carboxykinase. Biochemistry 30, 8851–8861 (1991).
Bazeaes, S., Silva, R., Goldie, H., Cardemil, E. & Jabalquinto, A.M. Reactivity of cysteinyl, arginyl and lysyl residues of Escherichia coli phosphoenolpyruvate carboxykinase against group-specific chemical reagents. J. Protein Chem. 12, 571–577 (1993).
Rojas, M.C., Encinas, M.V., Kemp, R.G., Latshaw, S.P. & Cardemil, E. Identification of reactive vicinal cysteines in Saccharomyces cerevisiae (ATP) and cytosolic rat liver (GTP) phosphoenolpyruvate carboxykinases. Biochim. Biophys. Acta 1164, 143–151 (1993).
Bazaes, S., Goldie, H., Cardemil, E. & Jabalquinto, A.M. Identification of reactive lysines in phosphoenolpyruvate carboxykinases from Escherichia coli and Saccharomyces cerevisiae. FEBS Letters 360, 207–210 (1995).
Krautwurst, H. et al. Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase: revised amino acid sequence, site-directed mutagenesis, and microenvironment characteristics of cysteines 365 and 458. Biochemistry 34, 6382–6388 (1995).
Lee, M.H., Hebda, C.A. & Nowak, T. The role of cations in avian liver phosphoenolpyruvate carboxykinase catalysis. J. Biol. Chem. 256, 12793–12801 (1981).
Hebda, C.A. & Nowak, T. Phosphoenolpyruvate carboxykinase: Mn2+ and Mn2+ substrate complexes. J. Biol. Chem. 257, 5515–5522 (1982).
Maggini, S., Stoecklin-Tschan, F.B., Mörikofer-Zwez, S. & Walter, P. A physiological role of Mn2+ in the regulation of cytosolic phosphoenolpyruvate carboxykinase from rat liver is unlikely. Biochem. J. 292, 365–370 (1993).
Miller, R.S. & Lane, M.D. The enzymatic carboxylation of phosphoenolpyruvate. J. Biol. Chem., 243, 6041–6049 (1968).
Sheu, K. et al. Stereochemical course of thiophosphoryl group transfer catalyzed by mitochondrial phosphoenolpyruvate carboxykinase. Biochemistry 23, 1779–1783 (1984).
Ash, D.E. et al. Mammalian and avian liver phosphoenolpyruvate carboxykinase: alternate substrates and inhibition by analogues of oxaloacetate. J. Biol. Chem. 265, 7377–7384 (1990).
Matte, A., Goldie, H., Sweet, R.M. & Delbaere, L.T.J. Crystal structure of Escherichia coli phosphoenolpyruvate carboxykinase - a new structural family with the P-loop nucleoside triphosphate hydrolase fold. J. Mol. Biol. 256, 126–143 (1996).
Ramakrishnan, C. & Ramachandran, G.N. Stereochemical criteria for polypeptide and protein chain conformations II. Allowed conformations for a pair of peptide units. Biophys. J. 5, 909–933 (1965).
Rose, G.D., Gierasch, L.M. & Smith, J.A. Turns in peptides and proteins. Adv. Protein Chem. 37, 1–109 (1985).
Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. SCOP: A structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol., 247, 536–540 (1995).
Saraste, M., Sibbald, P.R. & Wittinghofer, A. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430–434 (1990).
Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).
Schulz, G.E., Müller, C.W. and Diederichs, K. Induced-fit movements in adenylate kinases. J. Mol. Biol. 213, 627–630 (1990).
Bennett, W.S. & Steitz, T.A. Structure of a complex between yeast hexokinase A and glucose. J. Mol. Biol. 140, 211–230 (1980).
Gerstein, M., Lesk, A.M. & Chothia, C. Structural mechanisms for domain movements in proteins. Biochemistry 33, 6739–6749 (1994).
Traut, T.W. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur. J. Biochem. 222, 9–19 (1994).
Müller, C.W. & Schulz, G.E. Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 Å resolution. J. Mol. Biol. 224, 159–177 (1992).
Story, R.M. & Steitz, T.A. Structure of the recA protein-ADP complex. Nature 355, 374–376 (1992).
Milner-White, E.J., Coggins, J.R. and Anton, I.A. Evidence for an ancestral core structure in nucleotide-binding proteins with the type A motif. J. Mol. Biol. 221, 751–754 (1991).
Altona, C. & Sundaralingam, M. Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J. Amer. Chem. Soc. 94, 8205–8212 (1972).
Saran, A., Perahia, D. & Pullman, B. Molecular orbital calculations on the conformation of nucleic acids and their constituents. VII. Conformation of the sugar ring in β-nucleosides: The pseudorotational representation. Theor. Chim. Acta 30, 31–44 (1973).
Rhodes, L.M. & Schimmel, P.R. Nanosecond relaxation processes in aqueous mononucleoside solution. Biochemistry 10, 4426–4433 (1971).
Encinas, M.V., Rojas, M.C., Goldie, H. & Cardemil, E. Comparative steady-state fluorescence studies of cytosolic rat liver (GTP), Saccharomyces cerevisiae (ATP) and Escherichia coli (ATP) phosphoenolpyruvate carboxykinases. Biochim. Biophys. Acta 1162, 195–202 (1993).
Alvear, M. et al. Identification of reactive vicinal cysteines in Saccharomyces cerevisiae (ATP) and cytosolic rat liver (GTP) phosphoenolpyruvate carboxykinases. Biochim. Biophys. Acta 1119, 35–38 (1992).
Lewis, C.T., Seyer, J.M. & Carlson, G.M. Cysteine 288: An essential hyperreactive thiol of cytosolic phosphoenolpyruvate carboxykinase (GTP). J. Biol. Chem. 264, 27–33 (1989).
Wigley, D.B. et al. Crystal structure of an N-terminal fragment of the DNAgyrase B protein. Nature, 351, 624–629 (1991).
Berchtold, H. et al. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365, 126–132 (1993).
Pai, E.F. et al. Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341, 209–214 (1989).
Jabalquinto, A.M. & Cardemil, E. The kinetic mechanism of yeast phosphoenolpyruvate carboxykinase. Biochim. Biophys. Acta 1161, 85–90 (1993).
Konopka, J.M., Lardy, H.A. & Frey, P.A. Stereochemical course of thiophosphoryl transfer catalyzed by cytosolic phosphoenolpyruvate carboxykinase. Biochemistry, 25, 5571–5575 (1986).
Sakabe, N. A focusing Weissenberg camera with multi-layer-line screens for macromolecular crystallography. J. Appl. Crystallogr. 16, 542–547 (1983).
Higashi, T. The processing of diffraction data taken on a screenless Weissenberg camera for macromolecular crystallography. J. Appl. Crystallgr. 22, 9–18 (1989).
Collaborative Computational Project #4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).
French, S. & Wilson, K. On the treatment of negative intensity observations. Acta Crystallogr. A34, 517–525 (1978).
Delbaere, L.T.J. et al. Crystallization of calcium-activated phosphoenolpyruvate carboxykinase from Escherichia coli K12. J. Mol. Biol. 219, 593–594 (1991).
Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol. 33, 491–497 (1968).
Brünger, A.T. X-PLOR Manual, Version 3.1, (Yale University Press, New Haven, USA 1993).
Roussel, A. & Cambillau, C. TURBO FRODO. in Silicon Graphics Geometry Partner Directory, 77–88, (Silicon Graphics, Mountain View, CA 1989).
Engh, R.A. & Huber, R. Accurate bond and angle parameters for x-ray protein structure refinement. Acta Crystallogr. A47, 392–400 (1991).
Evans, S.V. SETOR: Hardware-lighted three-dimensional solid model representations of macromolecules. J. Mol. Graphics 11, 134–138 (1993).
Nicholls, A., Sharp, K. & Honig, B. GRASP Manual, (Columbia University, New York, NY 1992).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Tari, L., Matte, A., Pugazhenthi, U. et al. Snapshot of an enzyme reaction intermediate in the structure of the ATP–Mg2+–oxalate ternary complex of Escherichia coli PEP carboxykinase. Nat Struct Mol Biol 3, 355–363 (1996). https://doi.org/10.1038/nsb0496-355
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/nsb0496-355
This article is cited by
-
Saccharomyces cerevisiae Phosphoenolpyruvate Carboxykinase: The Relevance of Glu299 and Leu460 for Nucleotide Binding
The Protein Journal (2010)
-
Cloning and characterization ofMannheimia succiniciproducens MBEL55E phosphoenolpyruvate carboxykinase (pckA) gene
Biotechnology and Bioprocess Engineering (2002)
-
Mg2+–Mn2+ clusters in enzyme-catalyzed phosphoryl-transfer reactions
Nature Structural Biology (1997)
-
Familiar jaws with new twists
Nature Structural & Molecular Biology (1996)


