Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Snapshot of an enzyme reaction intermediate in the structure of the ATP–Mg2+–oxalate ternary complex of Escherichia coli PEP carboxykinase

Abstract

We report the 1.8 Å crystal structure of adenosine triphosphate (ATP)–magnesium–oxalate bound phosphoenolpyruvate carboxykinase (PCK) from Escherichia coli. ATP binding induces a 20° hinge-like rotation of the N- and C-terminal domains which closes the active-site cleft. PCK possesses a novel nucleotide-binding fold, particularly in the adenine-binding region, where the formation of a cis backbone torsion angle in a loop glycine residue promotes intimate contacts between the adenine-binding loop and adenine, while stabilizing a syn conformation of the base. This complex represents a reaction intermediate analogue along the pathway of the conversion of oxaloacetate to phosphoenolpyruvate, and provides insight into the mechanistic details of the chemical reaction catalysed by this enzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Utter, M.F. & Kolenbrander, H.M. X CO2 fixation on phosphoenolpyruvate. In The Enzymes (Boyer, P. D. ed.), 6, 117–168 (1972).

    Google Scholar 

  2. Williamson, J.R. Effects of fatty acids, glucagon, and anti-insulin serum on the control of gluconeogenesis and ketogenesis in rat liver. Adv. Enzyme Regul. 5, 229–254 (1967).

    Article  CAS  Google Scholar 

  3. Valera, A., Pujol, A., Pelegrin, M. & Bosch, F. Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non- insulin-dependent diabetes mellitus. Proc. Natl. Acad. Sci. USA 91, 9151–9154 (1994).

    Article  CAS  Google Scholar 

  4. Hanson, R.W. & Patel, Y.M. Phosphoenolpyruvate carboxykinase (GTP): the gene and the enzyme. Adv. Enzymol. 68, 203–281 (1994).

    Google Scholar 

  5. Jomain-Baum, M. & Schramm, V.L. Kinetic mechanism of phosphoenolpyruvate carboxykinase (GTP) from rat liver cytosol. J. Biol. Chem. 253, 3648–3659 (1978).

    CAS  PubMed  Google Scholar 

  6. Krebs, A. & Bridger, W.A. The kinetic properties of . phosphoenolpyruvate carboxykinase of Escherichia coli. Can. J. Biochem. 58, 309–318 (1980).

    Article  CAS  Google Scholar 

  7. Chen, C., Sato, Y. & Schramm, V.L. Isotope trapping and positional isotope exchange with rat and chicken liver phosphoenolpyruvate carboxykinases. Biochemistry 30, 4143–4151 (1991).

    Article  CAS  Google Scholar 

  8. Malebrán, L.P. & Cardemil, E. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae. Biochim. Biophys. Acta 915, 385–392 (1987).

    Article  Google Scholar 

  9. Makinen, A.L. & Nowak, T. A reactive cysteine in avian liver phosphoenolpyruvate carboxykinase. J. Biol. Chem. 264, 12148–12157 (1989).

    CAS  PubMed  Google Scholar 

  10. Cheng, K. & Nowak, T. A histidine residue at the active site of avian liver phosphoenolpyruvate carboxykinase. J. Biol. Chem. 264, 19666–19676 (1989).

    CAS  PubMed  Google Scholar 

  11. Guidinger, P.P. & Nowak, T. An active site lysine in avain liver phosphoenolpyruvate carboxykinase. Biochemistry 30, 8851–8861 (1991).

    Article  CAS  Google Scholar 

  12. Bazeaes, S., Silva, R., Goldie, H., Cardemil, E. & Jabalquinto, A.M. Reactivity of cysteinyl, arginyl and lysyl residues of Escherichia coli phosphoenolpyruvate carboxykinase against group-specific chemical reagents. J. Protein Chem. 12, 571–577 (1993).

    Article  Google Scholar 

  13. Rojas, M.C., Encinas, M.V., Kemp, R.G., Latshaw, S.P. & Cardemil, E. Identification of reactive vicinal cysteines in Saccharomyces cerevisiae (ATP) and cytosolic rat liver (GTP) phosphoenolpyruvate carboxykinases. Biochim. Biophys. Acta 1164, 143–151 (1993).

    Article  CAS  Google Scholar 

  14. Bazaes, S., Goldie, H., Cardemil, E. & Jabalquinto, A.M. Identification of reactive lysines in phosphoenolpyruvate carboxykinases from Escherichia coli and Saccharomyces cerevisiae. FEBS Letters 360, 207–210 (1995).

    Article  CAS  Google Scholar 

  15. Krautwurst, H. et al. Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase: revised amino acid sequence, site-directed mutagenesis, and microenvironment characteristics of cysteines 365 and 458. Biochemistry 34, 6382–6388 (1995).

    Article  CAS  Google Scholar 

  16. Lee, M.H., Hebda, C.A. & Nowak, T. The role of cations in avian liver phosphoenolpyruvate carboxykinase catalysis. J. Biol. Chem. 256, 12793–12801 (1981).

    CAS  PubMed  Google Scholar 

  17. Hebda, C.A. & Nowak, T. Phosphoenolpyruvate carboxykinase: Mn2+ and Mn2+ substrate complexes. J. Biol. Chem. 257, 5515–5522 (1982).

    CAS  PubMed  Google Scholar 

  18. Maggini, S., Stoecklin-Tschan, F.B., Mörikofer-Zwez, S. & Walter, P. A physiological role of Mn2+ in the regulation of cytosolic phosphoenolpyruvate carboxykinase from rat liver is unlikely. Biochem. J. 292, 365–370 (1993).

    Article  CAS  Google Scholar 

  19. Miller, R.S. & Lane, M.D. The enzymatic carboxylation of phosphoenolpyruvate. J. Biol. Chem., 243, 6041–6049 (1968).

    CAS  PubMed  Google Scholar 

  20. Sheu, K. et al. Stereochemical course of thiophosphoryl group transfer catalyzed by mitochondrial phosphoenolpyruvate carboxykinase. Biochemistry 23, 1779–1783 (1984).

    Article  CAS  Google Scholar 

  21. Ash, D.E. et al. Mammalian and avian liver phosphoenolpyruvate carboxykinase: alternate substrates and inhibition by analogues of oxaloacetate. J. Biol. Chem. 265, 7377–7384 (1990).

    CAS  PubMed  Google Scholar 

  22. Matte, A., Goldie, H., Sweet, R.M. & Delbaere, L.T.J. Crystal structure of Escherichia coli phosphoenolpyruvate carboxykinase - a new structural family with the P-loop nucleoside triphosphate hydrolase fold. J. Mol. Biol. 256, 126–143 (1996).

    Article  CAS  Google Scholar 

  23. Ramakrishnan, C. & Ramachandran, G.N. Stereochemical criteria for polypeptide and protein chain conformations II. Allowed conformations for a pair of peptide units. Biophys. J. 5, 909–933 (1965).

    Article  CAS  Google Scholar 

  24. Rose, G.D., Gierasch, L.M. & Smith, J.A. Turns in peptides and proteins. Adv. Protein Chem. 37, 1–109 (1985).

    Article  CAS  Google Scholar 

  25. Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. SCOP: A structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol., 247, 536–540 (1995).

    CAS  Google Scholar 

  26. Saraste, M., Sibbald, P.R. & Wittinghofer, A. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430–434 (1990).

    Article  Google Scholar 

  27. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  28. Schulz, G.E., Müller, C.W. and Diederichs, K. Induced-fit movements in adenylate kinases. J. Mol. Biol. 213, 627–630 (1990).

    Article  CAS  Google Scholar 

  29. Bennett, W.S. & Steitz, T.A. Structure of a complex between yeast hexokinase A and glucose. J. Mol. Biol. 140, 211–230 (1980).

    Article  CAS  Google Scholar 

  30. Gerstein, M., Lesk, A.M. & Chothia, C. Structural mechanisms for domain movements in proteins. Biochemistry 33, 6739–6749 (1994).

    Article  CAS  Google Scholar 

  31. Traut, T.W. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur. J. Biochem. 222, 9–19 (1994).

    Article  CAS  Google Scholar 

  32. Müller, C.W. & Schulz, G.E. Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 Å resolution. J. Mol. Biol. 224, 159–177 (1992).

    Article  Google Scholar 

  33. Story, R.M. & Steitz, T.A. Structure of the recA protein-ADP complex. Nature 355, 374–376 (1992).

    Article  CAS  Google Scholar 

  34. Milner-White, E.J., Coggins, J.R. and Anton, I.A. Evidence for an ancestral core structure in nucleotide-binding proteins with the type A motif. J. Mol. Biol. 221, 751–754 (1991).

    Article  CAS  Google Scholar 

  35. Altona, C. & Sundaralingam, M. Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J. Amer. Chem. Soc. 94, 8205–8212 (1972).

    Article  CAS  Google Scholar 

  36. Saran, A., Perahia, D. & Pullman, B. Molecular orbital calculations on the conformation of nucleic acids and their constituents. VII. Conformation of the sugar ring in β-nucleosides: The pseudorotational representation. Theor. Chim. Acta 30, 31–44 (1973).

    Article  CAS  Google Scholar 

  37. Rhodes, L.M. & Schimmel, P.R. Nanosecond relaxation processes in aqueous mononucleoside solution. Biochemistry 10, 4426–4433 (1971).

    Article  CAS  Google Scholar 

  38. Encinas, M.V., Rojas, M.C., Goldie, H. & Cardemil, E. Comparative steady-state fluorescence studies of cytosolic rat liver (GTP), Saccharomyces cerevisiae (ATP) and Escherichia coli (ATP) phosphoenolpyruvate carboxykinases. Biochim. Biophys. Acta 1162, 195–202 (1993).

    Article  CAS  Google Scholar 

  39. Alvear, M. et al. Identification of reactive vicinal cysteines in Saccharomyces cerevisiae (ATP) and cytosolic rat liver (GTP) phosphoenolpyruvate carboxykinases. Biochim. Biophys. Acta 1119, 35–38 (1992).

    Article  CAS  Google Scholar 

  40. Lewis, C.T., Seyer, J.M. & Carlson, G.M. Cysteine 288: An essential hyperreactive thiol of cytosolic phosphoenolpyruvate carboxykinase (GTP). J. Biol. Chem. 264, 27–33 (1989).

    CAS  PubMed  Google Scholar 

  41. Wigley, D.B. et al. Crystal structure of an N-terminal fragment of the DNAgyrase B protein. Nature, 351, 624–629 (1991).

    Article  CAS  Google Scholar 

  42. Berchtold, H. et al. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365, 126–132 (1993).

    Article  CAS  Google Scholar 

  43. Pai, E.F. et al. Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341, 209–214 (1989).

    Article  CAS  Google Scholar 

  44. Jabalquinto, A.M. & Cardemil, E. The kinetic mechanism of yeast phosphoenolpyruvate carboxykinase. Biochim. Biophys. Acta 1161, 85–90 (1993).

    Article  CAS  Google Scholar 

  45. Konopka, J.M., Lardy, H.A. & Frey, P.A. Stereochemical course of thiophosphoryl transfer catalyzed by cytosolic phosphoenolpyruvate carboxykinase. Biochemistry, 25, 5571–5575 (1986).

    Article  CAS  Google Scholar 

  46. Sakabe, N. A focusing Weissenberg camera with multi-layer-line screens for macromolecular crystallography. J. Appl. Crystallogr. 16, 542–547 (1983).

    Article  CAS  Google Scholar 

  47. Higashi, T. The processing of diffraction data taken on a screenless Weissenberg camera for macromolecular crystallography. J. Appl. Crystallgr. 22, 9–18 (1989).

    Article  CAS  Google Scholar 

  48. Collaborative Computational Project #4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  49. French, S. & Wilson, K. On the treatment of negative intensity observations. Acta Crystallogr. A34, 517–525 (1978).

    Article  CAS  Google Scholar 

  50. Delbaere, L.T.J. et al. Crystallization of calcium-activated phosphoenolpyruvate carboxykinase from Escherichia coli K12. J. Mol. Biol. 219, 593–594 (1991).

    Article  CAS  Google Scholar 

  51. Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol. 33, 491–497 (1968).

    Article  CAS  Google Scholar 

  52. Brünger, A.T. X-PLOR Manual, Version 3.1, (Yale University Press, New Haven, USA 1993).

    Google Scholar 

  53. Roussel, A. & Cambillau, C. TURBO FRODO. in Silicon Graphics Geometry Partner Directory, 77–88, (Silicon Graphics, Mountain View, CA 1989).

    Google Scholar 

  54. Engh, R.A. & Huber, R. Accurate bond and angle parameters for x-ray protein structure refinement. Acta Crystallogr. A47, 392–400 (1991).

    Article  CAS  Google Scholar 

  55. Evans, S.V. SETOR: Hardware-lighted three-dimensional solid model representations of macromolecules. J. Mol. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  56. Nicholls, A., Sharp, K. & Honig, B. GRASP Manual, (Columbia University, New York, NY 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tari, L., Matte, A., Pugazhenthi, U. et al. Snapshot of an enzyme reaction intermediate in the structure of the ATP–Mg2+–oxalate ternary complex of Escherichia coli PEP carboxykinase. Nat Struct Mol Biol 3, 355–363 (1996). https://doi.org/10.1038/nsb0496-355

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb0496-355

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing