Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the bacterial protein export chaperone SecB

Abstract

SecB is a bacterial molecular chaperone involved in mediating translocation of newly synthesized polypeptides across the cytoplasmic membrane of bacteria. The crystal structure of SecB from Haemophilus influenzae shows that the molecule is a tetramer organized as a dimer of dimers. Two long channels run along the side of the molecule. These are bounded by flexible loops and lined with conserved hydrophobic amino acids, which define a suitable environment for binding non-native polypeptides. The structure also reveals an acidic region on the top surface of the molecule, several residues of which have been implicated in binding to SecA, its downstream target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of the SecB monomer.
Figure 2: The quaternary structure of the SecB molecule.
Figure 3: The proposed peptide binding channel.
Figure 4: The proposed SecA binding site.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. von Heijne, G. The signal peptide. J. Membr. Biol. 115, 195–201 (1990).

    Article  CAS  Google Scholar 

  2. Trun, N.J., Stader, J., Lupas, A., Kumamoto, C. & Silhavy, T.J. Two cellular components, PrlA and SecB, that recognize different sequence determinants are required for efficient protein export. J. Bacteriol. 170, 5928– 5930 (1988).

    Article  CAS  Google Scholar 

  3. Lecker, S. et al. Three pure chaperone proteins of Escherichia coli, SecB, trigger factor and GroEL, form soluble complexes with precursor proteins in vitro. EMBO J. 8, 2703– 2709 (1989).

    Article  CAS  Google Scholar 

  4. Kumamoto, C A. Escherichia coli SecB protein associates with exported protein precursors in vivo. Proc. Natl. Acad. Sci. USA 86, 5320–5324 (1989).

    Article  CAS  Google Scholar 

  5. Randall, L.L. et al. Binding of SecB to ribosome-bound polypeptides has the same characteristics as binding to full-length, denatured proteins. Proc. Natl. Acad. Sci. USA 94, 802– 807 (1997).

    Article  CAS  Google Scholar 

  6. Hartl, F.U., Lecker, S., Schiebel, E., Hendrick, J.P. & Wickner, W. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell 63, 269– 279 (1990).

    Article  CAS  Google Scholar 

  7. Fekkes, P. et al. Preprotein transfer to the Escherichia coli translocase requires the co-operative binding of SecB and the signal sequence to SecA . Mol. Microbiol. 29, 1179– 1190 (1998).

    Article  CAS  Google Scholar 

  8. Hardy, S.J. & Randall, L.L. Recognition of ligands by SecB, a molecular chaperone involved in bacterial protein export. Philos. Trans. R. Soc. Lond. B Biol. Sci. 339, 343– 352; discussion 352–344 ( 1993).

    Article  CAS  Google Scholar 

  9. Kumamoto, C.A. & Beckwith, J. Evidence for specificity at an early step in protein export in Escherichia coli. J. Bacteriol. 163, 267–274 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Weiss, J.B., Ray, P.H. & Bassford, P.J., Jr. . Purified secB protein of Escherichia coli retards folding and promotes membrane translocation of the maltose-binding protein in vitro. Proc. Natl. Acad. Sci. USA 85, 8978–8982 (1988).

    Article  CAS  Google Scholar 

  11. Chen, L. & Sigler, P.B. The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity . Cell 99, 757–768 (1999).

    Article  CAS  Google Scholar 

  12. Zhu, X. et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606– 1614 (1996).

    Article  CAS  Google Scholar 

  13. Randall, L.L. Peptide binding by chaperone SecB: implications for recognition of nonnative structure. Science 257, 241– 245 (1992).

    Article  CAS  Google Scholar 

  14. Kumamoto, C.A. & Francetic, O. Highly selective binding of nascent polypeptides by an Escherichia coli chaperone protein in vivo. J. Bacteriol. 175, 2184– 2188 (1993).

    Article  CAS  Google Scholar 

  15. Volkert, T.L., Baleja, J.D. & Kumamoto, C.A. A highly mobile C-terminal tail of the Escherichia coli protein export chaperone SecB. Biochem. Biophys. Res. Commun. 264, 949–954 (1999).

    Article  CAS  Google Scholar 

  16. Kimsey, H.H., Dagarag, M.D. & Kumamoto, C.A. Diverse effects of mutation on the activity of the Escherichia coli export chaperone SecB. J. Biol. Chem. 270, 22831–22835 (1995).

    Article  CAS  Google Scholar 

  17. Muren, E.M., Suciu, D., Topping, T.B., Kumamoto, C.A. & Randall, L.L. Mutational alterations in the homotetrameric chaperone SecB that implicate the structure as dimer of dimers. J. Biol. Chem. 274, 19397– 19402 (1999).

    Article  CAS  Google Scholar 

  18. Panse, V.G., Swaminathan, C.P., Surolia, A. & Varadarajan, R. Thermodynamics of substrate binding to the chaperone SecB. Biochemistry 39, 2420–2427 ( 2000).

    Article  CAS  Google Scholar 

  19. Randall, L.L., Topping, T.B. & Hardy, S.J. No specific recognition of leader peptide by SecB, a chaperone involved in protein export. Science 248, 860–863 (1990).

    Article  CAS  Google Scholar 

  20. Randall, L.L., Topping, T.B., Suciu, D. & Hardy, S.J. Calorimetric analyses of the interaction between SecB and its ligands. Protein Sci. 7, 1195–1200 (1998).

    Article  CAS  Google Scholar 

  21. Eck, M.J., Dhe-Paganon, S., Trub, T., Nolte, R.T., Shoelson, S. E. Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85, 695–705 ( 1996).

    Article  CAS  Google Scholar 

  22. Kavanaugh, W.M., Turck, C.W., Williams, L.T. PTB domain binding to signaling proteins through a sequence motif containing phosphotyrosine. Science 268, 1177–1179 (1995).

    Article  CAS  Google Scholar 

  23. Knoblauch, N.T., et al. Substrate specificity of the SecB chaperone. J. Biol. Chem. 274, 34219–34225 (1999).

    Article  CAS  Google Scholar 

  24. Smith, V.F., Schwartz, B.L., Randall, L.L. & Smith, R.D. Electrospray mass spectrometric investigation of the chaperone SecB. Protein Sci. 5, 488–494 (1996).

    Article  CAS  Google Scholar 

  25. Wickner, W. & Leonard, M.R. Escherichia coli preprotein translocase. J. Biol. Chem. 271, 29514–29516 (1996).

    Article  CAS  Google Scholar 

  26. Woodbury, R.L. et al. Complexes between protein export chaperone SecB and SecA. Evidence for separate sites on SecA providing binding energy and regulatory interactions. J. Biol. Chem. 275, 24191– 24198 (2000).

    Article  CAS  Google Scholar 

  27. Fekkes, P., van der Does, C. & Driessen, A.J. The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation . EMBO J. 16, 6105–6113 (1997).

    Article  CAS  Google Scholar 

  28. Altman, E., Kumamoto, C.A. & Emr, S.D. Heat-shock proteins can substitute for SecB function during protein export in Escherichia coli. EMBO J. 10, 239–245 (1991).

    Article  CAS  Google Scholar 

  29. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  30. Hendrickson, W.A. & Ogata, C.M. Phase determination from multiwavelength anomalous diffraction measurements. Methods Enzymol. 276, 494–523 ( 1997).

    Article  CAS  Google Scholar 

  31. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  32. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  33. Thompson, J.D., Higgins, D.G., T.J. CLUSTAL W: improving the sensitivity of progressive multiple squence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673– 4680 (1994).

    Article  CAS  Google Scholar 

  34. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

  35. The persistance of vision raytracer version 3.1g, POV-team, Williamstown, Victoria, Australia. http://www.povray.org

  36. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Stuckey for maintaining the X-ray facility at the University of Michigan Medical School and for assistance on synchrotron data collection; M. Marletta and D. Peisach for access to their SGI graphic workstation during structure fitting and refinement; K. Brister for access and help at APS BioCARs beamlines; J. Dixon, M. Marletta, K. Orth and R. Taussig for critically reading the manuscript. This work was supported by an NIH grant to Z.X. and the University of Michigan Biological Scholar Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Knafels, J. & Yoshino, K. Crystal structure of the bacterial protein export chaperone SecB. Nat Struct Mol Biol 7, 1172–1177 (2000). https://doi.org/10.1038/82040

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/82040

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing