Abstract
The eukaryotic signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein particle that targets secretory and membrane proteins to the endoplasmic reticulum. The binding of SRP54 to the S domain of 7SL RNA is highly dependent on SRP19. Here we present the crystal structure of a human SRP ternary complex consisting of SRP19, the M domain of SRP54 and the S domain of 7SL RNA. Upon binding of the M domain of SRP54 to the 7SL RNA–SRP19 complex, the asymmetric loop of helix 8 in 7SL RNA collapses. The bases of the four nucleotides in the long strand of the asymmetric loop continuously stack and interact with the M domain, whereas the two adenines in the short strand flip out and form two A-minor motifs with helix 6. This stabilizing interaction is only possible when helix 6 has been positioned parallel to helix 8 by the prior binding of SRP19 to the tetraloops of helices 6 and 8. Hence, the crystal structure of the ternary complex suggests why SRP19 is necessary for the stable binding of SRP54 to the S domain RNA.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Accession codes
References
Walter, P. & Johnson, A.E. Annu. Rev. Cell Biol. 10, 87–119 (1994).
Lütcke, H. Eur. J. Biochem. 228, 531–550 (1995).
Keenan, R.J., Freymann, D.M., Stroud, R.M. & Walter, P. Annu. Rev. Biochem. 70, 755–775 (2001).
Wild, K., Weichenrieder, O., Strub, K., Sinning, I. & Cusack, S. Curr. Opin. Struct. Biol. 12, 72–81 (2002).
Miller, J.D., Wilhelm, H., Gierasch, L., Gilmore, R. & Walter, P. Nature 366, 351–354 (1993).
Hauser, S., Bacher, G., Dobberstein, B. & Lütcke, H. EMBO J. 14, 5485–5493 (1995).
Fulga, T.A., Sinning, I., Dobberstein, B. & Pool, M.R. EMBO J. 20, 2338–2347 (2001).
Siegel, V. & Walter, P. Nature 320, 81–84 (1986).
Siegel, V. & Walter, P. Proc. Natl. Acad. Sci. USA 85, 1801–1805 (1988).
Walter, P. & Blobel, G. Cell 34, 525–533 (1983).
Samuelsson, T. & Zwieb, C. & Samuelsson, T. Nucleic Acids Res. 28, 171–172 (2000).
Freymann, D.M., Keenan, R.J., Stroud, R.M. & Walter, P. Nature 385, 361–364 (1997).
Keenan, R.J., Freymann, D.M., Walter, P. & Stroud, R.M. Cell 94, 181–191 (1998).
Clemons, W.M., Gowda, K., Black, S.D., Zwieb, C. & Ramakrishnan, V. J. Mol. Biol. 292, 697–705 (1999).
Römisch, K., Webb, J., Lingelbach, K., Gausepohl, H. & Dobberstein, B. J. Cell Biol. 111, 1793–1802 (1990).
Zopf, D., Bernstein, H.D., Johnson, A.E. & Walter, P. EMBO J. 9, 4511–4517 (1990).
Batey, R.T., Rambo, R.P., Lucast, L., Rha, B. & Doudna, J.A. Science 287, 1232–1239 (2000).
Rose, M.A. & Weeks, K.M. Nature Struct. Biol. 8, 515–520 (2001).
Diener, J.L. & Wilson, C. Biochemistry 39, 12862–12874 (2000).
Wild, K., Sinning, I. & Cusack, S. Science 294, 598–601 (2001).
Oubridge, C., Kuglstatter, A., Jovine, L. & Nagai, K. Mol. Cell 9, 1251–1261 (2002).
Hainzl, T., Huang, S. & Sauer-Eriksson, A.E. Nature 417, 767–771 (2002).
Doherty, E.A., Batey, R.T., Masquida, B. & Doudna, J.A. Nature Struct. Biol. 8, 339–343 (2001).
Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B. & Steitz, T.A. Proc. Natl. Acad. Sci. USA 98, 4899–4903 (2001).
Jovine, L. et al. Structure 8, 527–540 (2000).
Schmitz, U. et al. RNA 5, 1419–1429 (1999).
Carter, A.P. et al. Nature 407, 340–348 (2000).
Ogle, J.M. et al. Science 292, 897–902 (2001).
Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).
Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).
Jones, T.A. & Kjeldgaard, M. Methods Enzymol. 277, 173–208 (1997).
Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).
Carson, M. Methods Enzymol. 277, 493–505 (1997).
Evans, S.V. J. Mol. Graph. 11, 134–138 (1993).
Read, R.J. Acta Crystallogr. A 42, 140–149 (1986).
Acknowledgements
G. Leonard and C. Jamin provided excellent support at the ESRF (Grenoble, France) beamlines ID14-4 and ID14-2. We thank A. Leung and E. Menichelli for their assistance in data collection and P.R. Evans, J. Li and L. Jovine for their help in structure determination. We thank V. Ramakrishnan for helpful discussion and A. Lenton for drawing figures. A.K has been supported by a post-graduate fellowship of the Boehringer Ingelheim Fonds.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Kuglstatter, A., Oubridge, C. & Nagai, K. Induced structural changes of 7SL RNA during the assembly of human signal recognition particle. Nat Struct Mol Biol 9, 740–744 (2002). https://doi.org/10.1038/nsb843
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nsb843
This article is cited by
-
Chemical reversible crosslinking enables measurement of RNA 3D distances and alternative conformations in cells
Nature Communications (2022)
-
XPO5 promotes primary miRNA processing independently of RanGTP
Nature Communications (2020)
-
The Archaeal Signal Recognition Particle: Present Understanding and Future Perspective
Current Microbiology (2017)
-
Protein-guided RNA dynamics during early ribosome assembly
Nature (2014)
-
Structural basis of signal-sequence recognition by the signal recognition particle
Nature Structural & Molecular Biology (2011)


