Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of NFAT1 bound as a dimer to the HIV-1 LTR κB element

Abstract

DNA binding by NFAT1 as a dimer has been implicated in the activation of host and viral genes. Here we report a crystal structure of NFAT1 bound cooperatively as a dimer to the highly conserved κB site from the human immunodeficiency virus 1 (HIV-1) long terminal repeat (LTR). This structure reveals a new mode of dimerization and protein-DNA recognition by the Rel homology region (RHR) of NFAT1. The two NFAT1 monomers form a complete circle around the κB DNA through protein-protein interactions mediated by both their N- and C-terminal subdomains. The major dimer interface, formed by the C-terminal domain, is asymmetric and substantially different from the symmetric dimer interface seen in other Rel family proteins. Comparison to other NFAT structures, including NFAT5 and the NFAT1–Fos-Jun–ARRE2 complex, reveals that NFAT1 adopts different conformations and its protein surfaces mediate distinct protein-protein interactions in the context of different DNA sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the NFAT1 dimer–κB DNA complex.
Figure 2: The RHR-C dimer interface.
Figure 3: Binding of the HIV-1 LTR κB site by NFAT1.
Figure 4: E′F loop interactions.
Figure 5: Context-specific functions of the NFAT1 protein surface.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rao, A., Luo, C. & Hogan, P.G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Crabtree, G.R. & Olson, E.N. NFAT signaling: choreographing the social lives of cells. Cell 109 (suppl.), S67–S79 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Northrop, J.P. et al. NF-AT components define a family of transcription factors targeted in T-cell activation. Nature 369, 497–502 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, L., Glover, J.N., Hogan, P.G., Rao, A. & Harrison, S.C. Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392, 42–48 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Ghosh, G., van Duyne, G., Ghosh, S. & Sigler, P.B. Structure of NF-κB p50 homodimer bound to a κB site. Nature 373, 303–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Muller, C.W., Rey, F.A., Sodeoka, M., Verdine, G.L. & Harrison, S.C. Structure of the NF-κB p50 homodimer bound to DNA. Nature 373, 311–317 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, F.E., Huang, D.B., Chen, Y.Q. & Ghosh, G. Crystal structure of p50/p65 heterodimer of transcription factor NF-κB bound to DNA. Nature 391, 410–413 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Stroud, J.C., Lopez-Rodriguez, C., Rao, A. & Chen, L. Structure of a TonEBP-DNA complex reveals DNA encircled by a transcription factor. Nat. Struct. Biol. 9, 90–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Lopez-Rodriguez, C. et al. Bridging the NFAT and NF-κB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress. Immunity 15, 47–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Miyakawa, H., Woo, S.K., Dahl, S.C., Handler, J.S. & Kwon, H.M. Tonicity-responsive enhancer binding protein, a Rel-like protein that stimulates transcription in response to hypertonicity. Proc. Natl. Acad. Sci. USA 96, 2538–2542 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, L. et al. Only one of the two DNA-bound orientations of AP-1 found in solution cooperates with NFATp. Curr. Biol. 5, 882–889 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Chytil, M. & Verdine, G.L. The Rel family of eukaryotic transcription factors. Curr. Opin. Struct. Biol. 6, 91–100 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Hoey, T., Sun, Y.L., Williamson, K. & Xu, X. Isolation of two new members of the NF-AT gene family and functional characterization of the NF-AT proteins. Immunity 2, 461–472 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. McCaffrey, P.G., Goldfeld, A.E. & Rao, A. The role of NFATp in cyclosporin A-sensitive tumor necrosis factor-α gene transcription. J. Biol. Chem. 269, 30445–30450 (1994).

    CAS  PubMed  Google Scholar 

  15. Chen, L. Combinatorial gene regulation by eukaryotic transcription factors. Curr. Opin. Struct. Biol. 9, 48–55 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Macian, F., Garcia-Rodriguez, C. & Rao, A. Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun. EMBO J. 19, 4783–4795 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719–731 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Kinoshita, S. et al. The T cell activation factor NF-ATc positively regulates HIV-1 replication and gene expression in T cells. Immunity 6, 235–44 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Kinoshita, S., Chen, B.K., Kaneshima, H. & Nolan, G.P. Host control of HIV-1 parasitism in T cells by the nuclear factor of activated T cells. Cell 95, 595–604 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Cron, R.Q. et al. NFAT1 enhances HIV-1 gene expression in primary human CD4 T cells. Clin. Immunol. 94, 179–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Robichaud, G.A., Barbeau, B., Fortin, J.F., Rothstein, D.M. & Tremblay, M.J. Nuclear factor of activated T cells is a driving force for preferential productive HIV-1 infection of CD45RO-expressing CD4+ T cells. J. Biol. Chem. 277, 23733–23741 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, B.K., Feinberg, M.B. & Baltimore, D. The κB sites in the human immunodeficiency virus type 1 long terminal repeat enhance virus replication yet are not absolutely required for viral growth. J. Virol. 71, 5495–5504 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jacobs, M.D. & Harrison, S.C. Structure of an IκBα/NF-κB complex. Cell 95, 749–758 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Huxford, T., Huang, D.B., Malek, S. & Ghosh, G. The crystal structure of the IκBα/NF-κB complex reveals mechanisms of NF-κB inactivation. Cell 95, 759–770 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Jin, L. et al. An asymmetric NFAT1 dimer on a pseudo-palindromic κB-like DNA site. Nat. Struct. Biol. advance online publication, 31 August 2003 (doi:10.1038/nsb975).

  26. Oum, J.H. et al. Molecular mechanism of NFAT family proteins for differential regulation of the IL-2 and TNF-α promoters. Mol. Cell 13, 77–84 (2002).

    CAS  Google Scholar 

  27. McCaffrey, P.G., Jain, J., Jamieson, C., Sen, R. & Rao, A. A T cell nuclear factor resembling NF-AT binds to an NF-κB site and to the conserved lymphokine promoter sequence 'cytokine-1'. J. Biol. Chem. 267, 1864–1871 (1992).

    CAS  PubMed  Google Scholar 

  28. Chen, Y.Q., Ghosh, S. & Ghosh, G. A novel DNA recognition mode by the NF-κB p65 homodimer. Nat. Struct. Biol. 5, 67–73 (1998).

    Article  PubMed  Google Scholar 

  29. Scully, K.M. et al. Allosteric effects of Pit-1 DNA sites on long-term repression in cell type specification. Science 290, 1127–1131 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Lefstin, J.A. & Yamamoto, K.R. Allosteric effects of DNA on transcriptional regulators. Nature 392, 885–888 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Escalante, C.R., Shen, L., Thanos, D. & Aggarwal, A.K. Structure of NF-κB p50/p65 heterodimer bound to the PRDII DNA element from the interferon-β promoter. Structure 10, 383–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Sen, R. & Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705–716 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Nabel, G. & Baltimore, D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326, 711–713 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Goldfeld, A.E., McCaffrey, P.G., Strominger, J.L. & Rao, A. Identification of a novel cyclosporin-sensitive element in the human tumor necrosis factor-α gene promoter. J. Exp. Med. 178, 1365–1379 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Okamoto, S. et al. The interleukin-8 AP-1 and κB-like sites are genetic end targets of FK506-sensitive pathway accompanied by calcium mobilization. J. Biol. Chem. 269, 8582–8589 (1994).

    CAS  PubMed  Google Scholar 

  36. Zhou, P., Sun, L.J., Dotsch, V., Wagner, G. & Verdine, G.L. Solution structure of the core NFATC1/DNA complex. Cell 92, 687–696 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Schreiber, S.L. & Crabtree, G.R. The mechanism of action of cyclosporin A and FK506. Immunol. Today 13, 136–142 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Molkentin, J.D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kiani, A., Rao, A. & Aramburu, J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 12, 359–372 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Aramburu, J. et al. Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 285, 2129–2133 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Otwinowski, Z. In Proceedings of the CCP4 Study Weekend (eds. Sawyer, L., Isaacs, N. & Burley, S.) 56–62 (Daresbury Laboratories, Warrington, UK, 1993).

    Google Scholar 

  42. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. A 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  43. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47 (Pt. 2), 110–119 (1991).

    Article  PubMed  Google Scholar 

  44. Collaborative Computational Project, Number 4. CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  45. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  46. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank H. Tong from APS beamline 14-BMC, A. Han for help in data collection and G. Murphy, J. Goodrich and T. Cech for critical reading of the manuscript. This research was supported by a scholar award from the Damon Runyon–Walter Winchell Foundation and grants from the W.M. Keck Foundation and the US National Institutes of Health (L.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giffin, M., Stroud, J., Bates, D. et al. Structure of NFAT1 bound as a dimer to the HIV-1 LTR κB element. Nat Struct Mol Biol 10, 800–806 (2003). https://doi.org/10.1038/nsb981

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsb981

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing