Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses

Abstract

New World hemorrhagic fever arenaviruses are rodent-borne agents that cause severe human disease. The GP1 subunit of the surface glycoprotein mediates cell attachment through transferrin receptor 1 (TfR1). We report the structure of Machupo virus (MACV) GP1 bound with human TfR1. Atomic details of the GP1-TfR1 interface clarify the importance of TfR1 residues implicated in New World arenavirus host specificity. Analysis of sequence variation among New World arenavirus GP1s and their host-species receptors, in light of the molecular structure, indicates determinants of viral zoonotic transmission. Infectivities of pseudoviruses in cells expressing mutated TfR1 confirm that contacts at the tip of the TfR1 apical domain determine the capacity of human TfR1 to mediate infection by particular New World arenaviruses. We propose that New World arenaviruses that are pathogenic to humans fortuitously acquired affinity for human TfR1 during adaptation to TfR1 of their natural hosts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the MACV GP1–human TfR1 complex.
Figure 2: MACV GP1.
Figure 3: Five interaction motifs in the MACV GP1-human TfR1 interface.
Figure 4: Conservation of the GP1-TfR1 interface.
Figure 5: Importance of the tip of the apical domain in determining the role of human TfR1 as a receptor for pathogenic New World arenaviruses.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Oldstone, M.B. Arenaviruses. I. The epidemiology molecular and cell biology of arenaviruses. Introduction. Curr. Top. Microbiol. Immunol. 262, V–XII (2002).

    PubMed  Google Scholar 

  2. Bowen, M.D., Peters, C.J. & Nichol, S.T. The phylogeny of New World (Tacaribe complex) arenaviruses. Virology 219, 285–290 (1996).

    Article  CAS  Google Scholar 

  3. Clegg, J.C. Molecular phylogeny of the arenaviruses. Curr. Top. Microbiol. Immunol. 262, 1–24 (2002).

    CAS  PubMed  Google Scholar 

  4. Emonet, S., Lemasson, J.J., Gonzalez, J.P., de Lamballerie, X. & Charrel, R.N. Phylogeny and evolution of old world arenaviruses. Virology 350, 251–257 (2006).

    Article  CAS  Google Scholar 

  5. Charrel, R.N. & de Lamballerie, X. Arenaviruses other than Lassa virus. Antiviral Res. 57, 89–100 (2003).

    Article  CAS  Google Scholar 

  6. Lisieux, T. et al. New arenavirus isolated in Brazil. Lancet 343, 391–392 (1994).

    Article  CAS  Google Scholar 

  7. Tesh, R.B., Jahrling, P.B., Salas, R. & Shope, R.E. Description of Guanarito virus (Arenaviridae: Arenavirus), the etiologic agent of Venezuelan hemorrhagic fever. Am. J. Trop. Med. Hyg. 50, 452–459 (1994).

    Article  CAS  Google Scholar 

  8. Delgado, S. et al. Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. PLoS Pathog. 4, e1000047 (2008).

    Article  Google Scholar 

  9. Buchmeier, M.J. Arenaviruses: protein structure and function. Curr. Top. Microbiol. Immunol. 262, 159–173 (2002).

    CAS  PubMed  Google Scholar 

  10. Eichler, R. et al. Identification of Lassa virus glycoprotein signal peptide as a trans-acting maturation factor. EMBO Rep. 4, 1084–1088 (2003).

    Article  CAS  Google Scholar 

  11. Saunders, A.A. et al. Mapping the landscape of the lymphocytic choriomeningitis virus stable signal peptide reveals novel functional domains. J. Virol. 81, 5649–5657 (2007).

    Article  CAS  Google Scholar 

  12. York, J. & Nunberg, J.H. Role of the stable signal peptide of Junin arenavirus envelope glycoprotein in pH-dependent membrane fusion. J. Virol. 80, 7775–7780 (2006).

    Article  CAS  Google Scholar 

  13. York, J. & Nunberg, J.H. Distinct requirements for signal peptidase processing and function in the stable signal peptide subunit of the Junin virus envelope glycoprotein. Virology 359, 72–81 (2007).

    Article  CAS  Google Scholar 

  14. Harrison, S.C. Viral membrane fusion. Nat. Struct. Mol. Biol. 15, 690–698 (2008).

    Article  CAS  Google Scholar 

  15. Rojek, J.M. & Kunz, S. Cell entry by human pathogenic arenaviruses. Cell. Microbiol. 10, 828–835 (2008).

    Article  CAS  Google Scholar 

  16. York, J., Agnihothram, S.S., Romanowski, V. & Nunberg, J.H. Genetic analysis of heptad-repeat regions in the G2 fusion subunit of the Junin arenavirus envelope glycoprotein. Virology 343, 267–274 (2005).

    Article  CAS  Google Scholar 

  17. Radoshitzky, S.R. et al. Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446, 92–96 (2007).

    Article  CAS  Google Scholar 

  18. Radoshitzky, S.R. et al. Receptor determinants of zoonotic transmission of New World hemorrhagic fever arenaviruses. Proc. Natl. Acad. Sci. USA 105, 2664–2669 (2008).

    Article  CAS  Google Scholar 

  19. Flanagan, M.L. et al. New World clade B arenaviruses can use transferrin receptor 1 (TfR1)-dependent and independent entry pathways, and glycoproteins from human pathogenic strains are associated with the use of TfR1. J. Virol. 82, 938–948 (2008).

    Article  CAS  Google Scholar 

  20. Aisen, P. Transferrin receptor 1. Int. J. Biochem. Cell Biol. 36, 2137–2143 (2004).

    Article  CAS  Google Scholar 

  21. Lawrence, C.M. et al. Crystal structure of the ectodomain of human transferrin receptor. Science 286, 779–782 (1999).

    Article  CAS  Google Scholar 

  22. Cheng, Y., Zak, O., Aisen, P., Harrison, S.C. & Walz, T. Structure of the human transferrin receptor-transferrin complex. Cell 116, 565–576 (2004).

    Article  CAS  Google Scholar 

  23. Abraham, J. et al. Host-species transferrin receptor 1 orthologs are cellular receptors for nonpathogenic new world clade B arenaviruses. PLoS Pathog. 5, e1000358 (2009).

    Article  Google Scholar 

  24. Bowen, M.D., Peters, C.J. & Nichol, S.T. Phylogenetic analysis of the Arenaviridae: patterns of virus evolution and evidence for cospeciation between arenaviruses and their rodent hosts. Mol. Phylogenet. Evol. 8, 301–316 (1997).

    Article  CAS  Google Scholar 

  25. Bennett, M.J., Lebron, J.A. & Bjorkman, P.J. Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature 403, 46–53 (2000).

    Article  CAS  Google Scholar 

  26. Bowden, T.A. et al. Unusual molecular architecture of the machupo virus attachment glycoprotein. J. Virol. 83, 8259–8265 (2009).

    Article  CAS  Google Scholar 

  27. Mothes, W., Boerger, A.L., Narayan, S., Cunningham, J.M. & Young, J.A. Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein. Cell 103, 679–689 (2000).

    Article  CAS  Google Scholar 

  28. Smith, J.G., Mothes, W., Blacklow, S.C. & Cunningham, J.M. The mature avian leukosis virus subgroup A envelope glycoprotein is metastable, and refolding induced by the synergistic effects of receptor binding and low pH is coupled to infection. J. Virol. 78, 1403–1410 (2004).

    Article  CAS  Google Scholar 

  29. Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103, 8060–8065 (2006).

    Article  CAS  Google Scholar 

  30. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  31. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  32. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  33. Brunger, A.T. Version 1.2 of the Crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    Article  CAS  Google Scholar 

  34. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, California, USA, 2002).

  35. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  36. Clamp, M., Cuff, J., Searle, S.M. & Barton, G.J. The Jalview Java alignment editor. Bioinformatics 20, 426–427 (2004).

    Article  CAS  Google Scholar 

  37. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. & Barton, G.J. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Article  CAS  Google Scholar 

  38. Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Babyonyshev for help with protein production, S. Jenni for advice and instruction on methods of structure determination and the staff at NE-CAT (Advanced Photon Source, Argonne National Laboratory) for assistance with X-ray data collection. The work was supported by US National Institutes of Health grants CA13202 (to S.C.H.) and R01 AI074879 (to H.C.). S.C.H. is an investigator in the Howard Hughes Medical Institute. J.A. is a Howard Hughes Medical Institute Gilliam fellow. K.D.C. is a Helen Hay Whitney Foundation postdoctoral fellow.

Author information

Authors and Affiliations

Authors

Contributions

J.A. designed and performed the experiments, analyzed the data and wrote the paper; K.D.C. assisted with data collection, molecular replacement, re-interpretation of the unliganded TfR1 structures and edited the paper; M.F. and H.C. assisted with data analysis and interpretation and edited the paper; S.C.H. helped design experiments, advised on model building and interpretation and participated in writing and editing the paper.

Corresponding author

Correspondence to Stephen C Harrison.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 6101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, J., Corbett, K., Farzan, M. et al. Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses. Nat Struct Mol Biol 17, 438–444 (2010). https://doi.org/10.1038/nsmb.1772

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nsmb.1772

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing