Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

B-Raf is required for ERK activation and tumor progression in a mouse model of pancreatic β-cell carcinogenesis

Abstract

Activation of the Raf/MEK/ERK pathway, often by gain-of-function mutations of RAS or RAF, is observed in many human cancers. The extracellular signal-regulated kinase (ERK) pathway is required for the proliferation of cancer cell lines harboring activating BRAF or, to a lesser extent, activating RAS mutations. It is still unclear, however, whether the pathway is required in vivo for tumor development, particularly in tumors in which B-Raf is not mutationally activated. During embryonic development, B-Raf is essential for angiogenesis in the placenta. To address the question of whether B-Raf contributed to tumor angiogenesis in vivo we conditionally ablated B-Raf in a model of pancreatic islet carcinoma driven by the functional inactivation of tumor suppressors (RIP1Tag2), which critically depends on angiogenesis for growth. We find that B-Raf is dispensable for the proliferation of tumor cells in culture, but necessary for ERK activation and for the expression of angiogenic factors by tumor cells in vivo and in vitro. In vivo, these defects result in the formation of hollow tumors with decreased vessel density and strongly reduced proliferation. The progression from adenoma to carcinoma is also significantly impaired. Thus, endogenous B-Raf contributes to the development of RIP1Tag2 tumors by supporting the stromal response and tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abdulkadir SA, Qu Z, Garabedian E, Song S-K, Peters TJ, Svaren J et al. (2001). Impaired prostate tumorigenesis in Egr1-deficient mice. Nat Med 7: 101–107.

    Article  CAS  Google Scholar 

  • Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H . (1998). beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev 12: 1763–1768.

    Article  CAS  Google Scholar 

  • Baron V, Adamson ED, Calogero A, Ragona G, Mercola D . (2005). The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGF[beta]1, PTEN, p53, and fibronectin. Cancer Gene Ther 13: 115.

    Article  Google Scholar 

  • Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737–744.

    Article  CAS  Google Scholar 

  • Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D . (1999). Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284: 808–812.

    Article  CAS  Google Scholar 

  • Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al. (2006). Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439: 353–357.

    Article  CAS  Google Scholar 

  • Casanovas O, Hicklin DJ, Bergers G, Hanahan D . (2005). Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8: 299–309.

    Article  CAS  Google Scholar 

  • Cavallaro U, Christofori G . (2001). Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough. Biochim Biophys Acta 1552: 39–45.

    CAS  PubMed  Google Scholar 

  • Chen AP, Ohno M, Giese KP, Kuhn R, Chen RL, Silva AJ . (2006). Forebrain-specific knockout of B-raf kinase leads to deficits in hippocampal long-term potentiation, learning, and memory. J Neurosci Res 83: 28–38.

    Article  CAS  Google Scholar 

  • Compagni A, Wilgenbus P, Impagnatiello MA, Cotten M, Christofori G . (2000). Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res 60: 7163–7169.

    CAS  PubMed  Google Scholar 

  • De Benedetti A, Graff JR . (2004). eIF-4E expression and its role in malignancies and metastases. Oncogene 23: 3189–3199.

    Article  CAS  Google Scholar 

  • Downward J . (2006). Cancer biology: signatures guide drug choice. Nature 439: 274–275.

    Article  CAS  Google Scholar 

  • Dumaz N, Hayward R, Martin J, Ogilvie L, Hedley D, Curtin JA et al. (2006). In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res 66: 9483–9491.

    Article  CAS  Google Scholar 

  • Efrat S, Linde S, Kofod H, Spector D, Delannoy M, Grant S et al. (1988). Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci USA 85: 9037–9041.

    Article  CAS  Google Scholar 

  • Eid MA, Kumar MV, Iczkowski KA, Bostwick DG, Tindall DJ . (1998). Expression of early growth response genes in human prostate cancer. Cancer Res 58: 2461–2468.

    CAS  PubMed  Google Scholar 

  • Emuss V, Garnett M, Mason C, Marais R . (2005). Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase activity compared with B-RAF. Cancer Res 65: 9719–9726.

    Article  CAS  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J . (2003). The biology of VEGF and its receptors. Nat Med 9: 669–676.

    Article  CAS  Google Scholar 

  • Galabova-Kovacs G, Kolbus A, Matzen D, Meissl K, Piazzolla D, Rubiolo C et al. (2006a). ERK and beyond: insights from B-Raf and Raf-1 conditional knockouts. Cell Cycle 5: 1514–1518.

    Article  CAS  Google Scholar 

  • Galabova-Kovacs G, Matzen D, Piazzolla D, Meissl K, Plyushch T, Chen AP et al. (2006b). Essential role of B-Raf in ERK activation during extraembryonic development. Proc Natl Acad Sci USA 103: 1325–1330.

    Article  CAS  Google Scholar 

  • Garnett MJ, Marais R . (2004). Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6: 313–319.

    Article  CAS  Google Scholar 

  • Gavert N, Conacci-Sorrell M, Gast D, Schneider A, Altevogt P, Brabletz T et al. (2005). L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol 168: 633–642.

    Article  CAS  Google Scholar 

  • Gomez E, Pritchard C, Herbert TP . (2002). cAMP-dependent protein kinase and Ca2+ influx through L-type voltage-gated calcium channels mediate Raf-independent activation of extracellular regulated kinase in response to glucagon-like peptide-1 in pancreatic beta-cells. J Biol Chem 277: 48146–48151.

    Article  CAS  Google Scholar 

  • Hanahan D . (1985). Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315: 115–122.

    Article  CAS  Google Scholar 

  • Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S et al. (2000). Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156: 1363–1380.

    Article  CAS  Google Scholar 

  • Herbert TP, Tee AR, Proud CG . (2002). The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites. J Biol Chem 277: 11591–11596.

    Article  CAS  Google Scholar 

  • Herzig M, Novatchkova M, Christofori G . (1999). An unexpected role for p53 in augmenting SV40 large T antigen-mediated tumorigenesis. Biol Chem 380: 203–211.

    Article  CAS  Google Scholar 

  • Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D . (2002). VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 1: 193–202.

    Article  CAS  Google Scholar 

  • Krones-Herzig A, Adamson E, Mercola D . (2003). Early growth response 1 protein, an upstream gatekeeper of the p53 tumor suppressor, controls replicative senescence. PNAS 100: 3233–3238.

    Article  CAS  Google Scholar 

  • Krones-Herzig A, Mittal S, Yule K, Liang H, English C, Urcis R et al. (2005). Early growth response 1 acts as a tumor suppressor in vivo and in vitro via regulation of p53. Cancer Res 65: 5133–5143.

    Article  CAS  Google Scholar 

  • Lee CG, Cho SJ, Kang MJ, Chapoval SP, Lee PJ, Noble PW et al. (2004). Early growth response gene 1-mediated apoptosis is essential for transforming growth factor beta1-induced pulmonary fibrosis. J Exp Med 200: 377–389.

    Article  CAS  Google Scholar 

  • Lim K-H, Counter CM . (2005). Reduction in the requirement of oncogenic Ras signaling to activation of PI3K/AKT pathway during tumor maintenance. Cancer Cell 8: 381–392.

    Article  CAS  Google Scholar 

  • Mikula M, Schreiber M, Husak Z, Kucerova L, Ruth J, Wieser R et al. (2001). Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf- 1 gene. Embo J 20: 1952–1962.

    Article  CAS  Google Scholar 

  • Morrison TB, Weis JJ, Wittwer CT . (1998). Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24: 954–958, 960, 962.

    CAS  PubMed  Google Scholar 

  • Nozawa H, Chiu C, Hanahan D . (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA 103: 12493–12498.

    Article  CAS  Google Scholar 

  • Pannu J, Nakerakanti S, Smith E, ten Dijke P, Trojanowska M . (2007). Transforming growth factor-beta receptor type I-dependent fibrogenic gene program is mediated via activation of Smad1 and ERK1/2 pathways. J Biol Chem 282: 10405–10413.

    Article  CAS  Google Scholar 

  • Perl AK, Dahl U, Wilgenbus P, Cremer H, Semb H, Christofori G . (1999). Reduced expression of neural cell adhesion molecule induces metastatic dissemination of pancreatic beta tumor cells. Nat Med 5: 286–291.

    Article  CAS  Google Scholar 

  • Rolli-Derkinderen M, Machavoine F, Baraban JM, Grolleau A, Beretta L, Dy M . (2003). ERK and p38 inhibit the expression of 4E-BP1 repressor of translation through induction of Egr-1. J Biol Chem 278: 18859–18867.

    Article  CAS  Google Scholar 

  • Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J . (2004). Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 101: 13489–13494.

    Article  CAS  Google Scholar 

  • Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A et al. (2006). BRAF mutation predicts sensitivity to MEK inhibition. Nature 439: 358–362.

    Article  CAS  Google Scholar 

  • Sugimoto H, Mundel TM, Kieran MW, Kalluri R . (2006). Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5: 1640–1646.

    Article  CAS  Google Scholar 

  • Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R . (2004). Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 24: 6539–6549.

    Article  CAS  Google Scholar 

  • Wang X, Proud CG, Jon L . (2007). Methods in Enzymology, Vol. 431 Academic Press: New York, pp 113–142.

    Google Scholar 

  • Waskiewicz AJ, Flynn A, Proud CG, Cooper JA . (1997). Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. Embo J 16: 1909–1920.

    Article  CAS  Google Scholar 

  • Wellbrock C, Karasarides M, Marais R . (2004). The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5: 875–885.

    Article  CAS  Google Scholar 

  • Xian X, Hakansson J, Stahlberg A, Lindblom P, Betsholtz C, Gerhardt H et al. (2006). Pericytes limit tumor cell metastasis. J Clin Invest 116: 642–651.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Matthias Hamerl and the animal house team for excellent technical help. This work was supported by European Community Grant LSH-CT-2003-506803 (to MB) and the NCCR Molecular Oncology of the Swiss National Science Foundation (to GC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Baccarini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobczak, I., Galabova-Kovacs, G., Sadzak, I. et al. B-Raf is required for ERK activation and tumor progression in a mouse model of pancreatic β-cell carcinogenesis. Oncogene 27, 4779–4787 (2008). https://doi.org/10.1038/onc.2008.128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2008.128

Keywords

This article is cited by

Search

Quick links