Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Notch3: from subtle structural differences to functional diversity

Abstract

The Notch3 gene was identified, at the beginning of 90s, as the third mammalian Notch and was initially reported as being expressed in proliferating neuroepithelium. Since then, increasing evidence has demonstrated a number of structural and functional differences between Notch3 and both Notch1 and Notch2, which exhibit the highest structural similarity among the four mammalian Notch receptors. Possibly due to its more restricted tissue distribution, targeted deletion of murine Notch3 does not lead to embryonic lethality as is observed with targeted deletion of Notch1 and Notch2. However, genetic mutation, amplification and deregulated expression of Notch3 have been correlated with the disruption of cell differentiation in transgenic mice and to development of diseases in mice and humans. This review discusses the possible relationships between the structural differences and the nonredundant roles that Notch3 plays in the pathogenesis of the human disease cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy and in the regulation of murine T-cell differentiation and leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Anastasi E, Campese AF, Bellavia D, Bulotta A, Balestri A, Pascucci M et al. (2003). Expression of activated Notch3 in transgenic mice enhances generation of T regulatory cells and protects against experimental autoimmune diabetes. J Immunol 171: 4504–4511.

    Article  CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ . (1999). Notch signaling: cell fate control and signal integration in development. Science 284: 770–776.

    Article  CAS  PubMed  Google Scholar 

  • Ascano JM, Beverly LJ, Capobianco AJ . (2003). The C-terminal PDZ-ligand of JAGGED1 is essential for cellular transformation. J Biol Chem 278: 8771–8779.

    Article  CAS  PubMed  Google Scholar 

  • Austin J, Kimble J . (1989). Transcript analysis of glp-1 and lin-12, homologous genes required for cell interactions during development of C. elegans. Cell 58: 565–571.

    Article  CAS  PubMed  Google Scholar 

  • Barrick D, Kopan R . (2006). The Notch transcription activation complex makes its move. Cell 124: 883–885.

    Article  CAS  PubMed  Google Scholar 

  • Beatus P, Lundkvist J, Oberg C, Pedersen K, Lendahl U . (2001). The origin of the ankyrin repeat region in Notch intracellular domains is critical for regulation of HES promoter activity. Mech Dev 104: 3–20.

    Article  CAS  PubMed  Google Scholar 

  • Bellavia D, Campese AF, Alesse E, Vacca A, Felli MP, Balestri A et al. (2000). Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J 19: 3337–3348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellavia D, Campese AF, Checquolo S, Balestri A, Biondi A, Cazzaniga G et al. (2002). Combined expression of pTalpha and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc Natl Acad Sci USA 99: 3788–3793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellavia D, Mecarozzi M, Campese AF, Grazioli P, Talora C, Frati L et al. (2007). Notch3 and the Notch3-upregulated RNA-binding protein HuD regulate Ikaros alternative splicing. EMBO J 26: 1670–1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beverly LJ, Capobianco AJ . (2003). Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T cell leukemogenesis. Cancer Cell 3: 551–564.

    Article  CAS  PubMed  Google Scholar 

  • Bray SJ . (2006). Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7: 678–689.

    Article  CAS  PubMed  Google Scholar 

  • Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR et al. (2000). A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell 5: 207–216.

    Article  CAS  PubMed  Google Scholar 

  • Cemerski S, Shaw A . (2006). Immune synapses in T-cell activation. Curr Opin Immunol 18: 298–304.

    Article  CAS  PubMed  Google Scholar 

  • Christensen S, Kodoyianni V, Bosenberg M, Friedman L, Kimble J . (1996). lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). Development 122: 1373–1383.

    CAS  PubMed  Google Scholar 

  • Dang TP, Eichenberger S, Gonzalez A, Olson S, Carbone DP . (2003). Constitutive activation of Notch3 inhibits terminal epithelial differentiation in lungs of transgenic mice. Oncogene 22: 1988–1997.

    Article  CAS  PubMed  Google Scholar 

  • De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS et al. (1999). A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398: 518–522.

    Article  CAS  PubMed  Google Scholar 

  • Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT et al. (2004). Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18: 2730–2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felli MP, Maroder M, Mitsiadis TA, Campese AF, Bellavia D, Vacca A et al. (1999). Expression pattern of notch1, 2 and 3 and Jagged1 and 2 in lymphoid and stromal thymus components: distinct ligand-receptor interactions in intrathymic T cell development. Int Immunol 11: 1017–1025.

    Article  CAS  PubMed  Google Scholar 

  • Felli MP, Vacca A, Calce A, Bellavia D, Campese AF, Grillo R et al. (2005). PKC theta mediates pre-TCR signaling and contributes to Notch3-induced T-cell leukemia. Oncogene 24: 992–1000.

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald K, Wilkinson HA, Greenwald I . (1993). glp-1 can substitute for lin-12 in specifying cell fate decisions in Caenorhabditis elegans. Development 119: 1019–1027.

    CAS  PubMed  Google Scholar 

  • Fortini ME, Artavanis-Tsakonas S . (1994). The suppressor of hairless protein participates in notch receptor signaling. Cell 79: 273–282.

    Article  CAS  PubMed  Google Scholar 

  • Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM et al. (2004). Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 101: 15949–15954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada Y, Kadokawa Y, Okabe M, Ikawa M, Coleman JR, Tsujimoto Y . (1999). Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development 126: 3415–3424.

    CAS  PubMed  Google Scholar 

  • Hrabe de Angelis M, McIntyre II J, Gossler A . (1997). Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386: 717–721.

    Article  CAS  PubMed  Google Scholar 

  • Ikeuchi T, Sisodia SS . (2003). The Notch ligands, Delta1 and Jagged2, are substrates for presenilin-dependent ‘gamma-secretase’ cleavage. J Biol Chem 278: 7751–7754.

    Article  CAS  PubMed  Google Scholar 

  • Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M, Battail N et al. (2000). The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 105: 597–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P et al. (1996). Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383: 707–710.

    Article  CAS  PubMed  Google Scholar 

  • Konishi J, Kawaguchi KS, Vo H, Haruki N, Gonzalez A, Carbone DP et al. (2007). Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res 67: 8051–8057.

    Article  CAS  PubMed  Google Scholar 

  • Kopan R, Weintraub H . (1993). Mouse notch: expression in hair follicles correlates with cell fate determination. J Cell Biol 121: 631–641.

    Article  CAS  PubMed  Google Scholar 

  • Kovall RA . (2007). Structures of CSL, Notch and Mastermind proteins: piecing together an active transcription complex. Curr Opin Struct Biol 17: 117–127.

    Article  CAS  PubMed  Google Scholar 

  • Kurooka H, Kuroda K, Honjo T . (1998). Roles of the ankyrin repeats and C-terminal region of the mouse notch1 intracellular region. Nucleic Acids Res 26: 5448–5455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacombe P, Oligo C, Domenga V, Tournier-Lasserve E, Joutel A . (2005). Impaired cerebral vasoreactivity in a transgenic mouse model of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy arteriopathy. Stroke 36: 1053–1058.

    Article  PubMed  Google Scholar 

  • Lardelli M, Dahlstrand J, Lendahl U . (1994). The novel Notch homologue mouse Notch 3 lacks specific epidermal growth factor-repeats and is expressed in proliferating neuroepithelium. Mech Dev 46: 123–136.

    Article  CAS  PubMed  Google Scholar 

  • LaVoie MJ, Selkoe DJ . (2003). The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments. J Biol Chem 278: 34427–34437.

    Article  CAS  PubMed  Google Scholar 

  • Li K, Li Y, Wu W, Gordon WR, Chang DW, Lu M et al. (2008). Modulation of notch signaling by antibodies specific for the extracellular negative regulatory region of Notch3. J Biol Chem 283: 8046–8054.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Baker NE . (2004). The roles of cis-inactivation by Notch ligands and of neuralized during eye and bristle patterning in Drosophila. BMC Dev Biol 4: 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubman OY, Ilagan MX, Kopan R, Barrick D . (2007). Quantitative dissection of the Notch:CSL interaction: insights into the Notch-mediated transcriptional switch. J Mol Biol 365: 577–589.

    Article  CAS  PubMed  Google Scholar 

  • Monet M, Domenga V, Lemaire B, Souilhol C, Langa F, Babinet C et al. (2007). The archetypal R90C CADASIL-NOTCH3 mutation retains NOTCH3 function in vivo. Hum Mol Genet 16: 982–992.

    Article  CAS  PubMed  Google Scholar 

  • Nam Y, Sliz P, Song L, Aster JC, Blacklow SC . (2006). Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124: 973–983.

    Article  CAS  PubMed  Google Scholar 

  • Nehring LC, Miyamoto A, Hein PW, Weinmaster G, Shipley JM . (2005). The extracellular matrix protein MAGP-2 interacts with Jagged1 and induces its shedding from the cell surface. J Biol Chem 280: 20349–20355.

    Article  CAS  PubMed  Google Scholar 

  • Ong CT, Cheng HT, Chang LW, Ohtsuka T, Kageyama R, Stormo GD et al. (2006). Target selectivity of vertebrate notch proteins. Collaboration between discrete domains and CSL-binding site architecture determines activation probability. J Biol Chem 281: 5106–5119.

    Article  CAS  PubMed  Google Scholar 

  • Park JT, Li M, Nakayama K, Mao TL, Davidson B, Zhang Z et al. (2006). Notch3 gene amplification in ovarian cancer. Cancer Res 66: 6312–6318.

    Article  CAS  PubMed  Google Scholar 

  • Petcherski AG, Kimble J . (2000). Mastermind is a putative activator for Notch. Curr Biol 10: R471–R473.

    Article  CAS  PubMed  Google Scholar 

  • Qi H, Rand MD, Wu X, Sestan N, Wang W, Rakic P et al. (1999). Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science 283: 91–94.

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg EV . (2001). Notchless T cell maturation? Nat Immunol 2: 189–190.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Ohara O, Takagi M, Takeda S, Katsube K . (2002). Intracellular cell-autonomous association of Notch and its ligands: a novel mechanism of Notch signal modification. Dev Biol 241: 313–326.

    Article  CAS  PubMed  Google Scholar 

  • Sansone P, Storci G, Giovannini C, Pandolfi S, Pianetti S, Taffurelli M et al. (2007a). p66Shc/Notch-3 interplay controls self-renewal and hypoxia survival in human stem/progenitor cells of the mammary gland expanded in vitro as mammospheres. Stem Cells 25: 807–815.

    Article  CAS  PubMed  Google Scholar 

  • Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M et al. (2007b). IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117: 3988–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah S, Lee SF, Tabuchi K, Hao YH, Yu C, LaPlant Q et al. (2005). Nicastrin functions as a gamma-secretase-substrate receptor. Cell 122: 435–447.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Chiba S, Kumano K, Hosoya N, Takahashi T, Kanda Y et al. (1999). Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods. J Biol Chem 274: 32961–32969.

    Article  CAS  PubMed  Google Scholar 

  • Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T . (1994). Notch1 is essential for postimplantation development in mice. Genes Dev 8: 707–719.

    Article  CAS  PubMed  Google Scholar 

  • Talora C, Campese AF, Bellavia D, Pascucci M, Checquolo S, Groppioni M et al. (2003). Pre-TCR-triggered ERK signalling-dependent downregulation of E2A activity in Notch3-induced T-cell lymphoma. EMBO Rep 4: 1067–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Taniguchi Y, Minoguchi S, Sakai T, Tun T, Furukawa T et al. (1995). Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Curr Biol 5: 1416–1423.

    Article  CAS  PubMed  Google Scholar 

  • Vacca A, Felli MP, Palermo R, Di Mario G, Calce A, Di Giovine M et al. (2006). Notch3 and pre-TCR interaction unveils distinct NF-kappaB pathways in T-cell development and leukemia. EMBO J 25: 1000–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varnum-Finney B, Purton LE, Yu M, Brashem-Stein C, Flowers D, Staats S et al. (1998). The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood 91: 4084–4091.

    CAS  PubMed  Google Scholar 

  • Voll RE, Jimi E, Phillips RJ, Barber DF, Rincon M, Hayday AC et al. (2000). NF-kappa B activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity 13: 677–689.

    Article  CAS  PubMed  Google Scholar 

  • von Boehmer H, Aifantis I, Azogui O, Feinberg J, Saint-Ruf C, Zober C et al. (1998). Crucial function of the pre-T-cell receptor (TCR) in TCR beta selection, TCR beta allelic exclusion and alpha beta versus gamma delta lineage commitment. Immunol Rev 165: 111–119.

    Article  CAS  PubMed  Google Scholar 

  • Vooijs M, Schroeter EH, Pan Y, Blandford M, Kopan R . (2004). Ectodomain shedding and intramembrane cleavage of mammalian Notch proteins is not regulated through oligomerization. J Biol Chem 279: 50864–50873.

    Article  CAS  PubMed  Google Scholar 

  • Weinmaster G, Roberts VJ, Lemke G . (1991). A homolog of Drosophila Notch expressed during mammalian development. Development 113: 199–205.

    CAS  PubMed  Google Scholar 

  • Weinmaster G, Roberts VJ, Lemke G . (1992). Notch2: a second mammalian Notch gene. Development 116: 931–941.

    CAS  PubMed  Google Scholar 

  • Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S . (1985). Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43: 567–581.

    Article  CAS  PubMed  Google Scholar 

  • Wilson JJ, Kovall RA . (2006). Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell 124: 985–996.

    Article  CAS  PubMed  Google Scholar 

  • Winandy S, Wu P, Georgopoulos K . (1995). A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 83: 289–299.

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Bresnick EH . (2007). Bare rudiments of notch signaling: how receptor levels are regulated. Trends Biochem Sci 32: 477–485.

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C et al. (1999). Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8: 723–730.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Jia L, Lee SJ, Wang MM . (2007). Conserved signal peptide of Notch3 inhibits interaction with proteasome. Biochem Biophys Res Commun 355: 245–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of Screpanti's laboratory, whose comments and work have contributed to the realization of this review. Work in the authors' laboratory is supported by Grants from the Associazione Italiana per la Ricerca sul Cancro (AIRC) and the Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Screpanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellavia, D., Checquolo, S., Campese, A. et al. Notch3: from subtle structural differences to functional diversity. Oncogene 27, 5092–5098 (2008). https://doi.org/10.1038/onc.2008.230

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/onc.2008.230

Keywords

This article is cited by

Search

Quick links