Abstract
Stress strain curves and tensile impact strength were measured for fractionated specimens of the molecular weight range of 1×104–×105 (M̅w/M̅n=1.1–1.3) for various kinds of linear low-density polyethylene (LLDPE). The fractions of molecular weight less than 2×104 were extremely brittle and elongation was not possible. Elongation with stress increase was observed for the fractions of molecular weight above 5×104 for ethylene/butene-1 type LLDPEs (EB) and for the fractions of molecular weight above 3×104 for ethylene/4-methyl pentene-1 (EMP) and ethylene/octene-1 (EO) type LLDPEs. Tensile impact strength (σTI) increased with increasing molecular weight, reached a maximum at the molecular weight range of about 1–2×105 and then decreased slightly. Molecular weight range above which the impact strength could be observed was 4×104 for EB, 2×104 for EMP and EO, and 8×104 for the fractions of ethylene homopolymer, respectively. Comparing the results among fractions of the same molecular weight, it was found that σTI increased with narrowing the intermolecular distribution of chemical composition. Further to say, σTI was remarkably dependent on the distributions of the crystallinity and the lamella thickness of the fraction; i.e., the narrower the structural distributions on the crystalline level, the higher the σTI. These results could be explained by the concentration of tie molecules and the homogeniety of tie molecular orientation which would be strongly correlated with the distributions of the crystalline structure.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
F. M. Mirabella, Jr. and E. A. Ford, J. Polym. Sci., Polym. Phys. Ed., 25, 777 (1987).
L. D. Cady, Plastic Eng., 43, 25 (1987).
L. Wild, T. R. Ryle, D. C. Knobeloch, and I. R. Peat, J. Polym. Sci., Polym. Phys. Ed., 20, 441 (1982).
K. Fujimoto, K. Ogawara, and N. Emura, Toyosodakenkyuu Houkoku, 28, 89 (1984).
D. R. Burfield, Makromol. Chem., 186, 2657 (1985).
V. B. F. Mathot, “POLYCON ’84,” Chameleon Press, London, 1984, p 1.
V. B. F. Mathot, H. M. Schoffeleers, A. M. G. Brands, and M. F. J. Pijpers in “Morphology of Polymers,” Walter de Gruyter & Co., Berlin, 1986, p 363.
S. Hosoda, Polym. J., 20, 383 (1988).
G. Bodor, H. J. Dalcolmo, and O. Schroter, Colloid Polym. Sci., 267, 480 (1989).
M. Aoyagi, U. Satoh, S. Hosoda, and A. Uemura, Bull. Inst. Chem. Res., Kyoto Univ., 69, 177 (1991).
S. Hosoda and M. Furuta, Makromol. Chem., Rapid Commun., 2, 577 (1981).
S. Hosoda, Makromol. Chem., 185, 787 (1984).
S. Hosoda, K. Kojima, and M. Furuta, Makromol. Chem., 187, 1501 (1986).
M. Furuta, S. Hosoda, and K. Kojima, J. Appl. Polym. Sci., 33, 401 (1987).
S. Hosoda and Y. Gotoh, Polym. J., 20, 17 (1988).
S. Hosoda, H. Nomura, Y. Gotoh, and H. Kihara, Polymer, 31, 1999 (1990).
R. A. C. Deblieck, and V. B. F. Mathot, J. Mater. Sci. Lett., 7, 1276 (1988).
F. M. Mirabella!!Jr!! S. P. Westphal, P. L. Fernando, E. A. Ford, and J. G. Williams, J. Polym. Sci., Polym. Phys. Ed., 26, 1995 (1988).
V. B. F. Mathot and M. F. J. Pijpers, J. Appl. Polym. Sci., 39, 979 (1990).
L. D. Cady, Broadening Horiz Linear Low Technol., 107 (1985).
D. M. Kalyon and F. H. Moy, Polym. Eng. Sci., 28, 1551 (1988).
S. Hashemi and J. G. Willams, Polymer, 27, 384 (1986).
J. J. Wooster, D. R. Parikh, K. Sehanobish, and S. P. Chum, Polym. Prepr., Am. Chem. Soc. Div. Polym. Chem.,, 323 (1989).
W. Payer, W. Wicke, and B. Cornils, Angew. Makromol. Chem., 94, 49 (1981).
R. Benavente, J. M. Perena, A. Bello, E. Perez, C. Aguilar, and M. C. Martinez, J. Mater. Sci., 25, 4162 (1990).
R. Benavente, J. M. Petena, A. Bello, E. Perez, C. Martinez, and C. Aguilar, Br. Polym. J., 23, 95 (1990).
J. A. G. Orozco, J. M. Rego, and I. Katime, J. Appl. Polym. Sci., 40, 2219 (1990).
R. A. Bubeck and H. M. Baker, Polymer, 23, 1680 (1982).
Y-L. Huang and N. Brown, J. Polym. Sci., Polym. Phys. Ed., 28, 2007 (1990).
Y-L. Huang and N. Brown, J. Polym. Sci., Polym. Phys. Ed., 29, 129 (1991).
A. Lustinger and N. Ishikawa, J. Polym. Sci., Polym. Phys. Ed., 29, 1047 (1991).
V. R. Raju, G. G. Smith, G. Marin, J. R. Knox, and W. W. Graessley, J. Polym. Sci., Polym. Phys. Ed., 17, 1183 (1979).
K. Murata and S. Kobayashi, Kobunshi Kagaku, 26, 548 (1969).
K. Shirayama, T. Okada, and S. Kita, J. Polym. Sci., A, 3, 907 (1965).
S. N. Zhurkov, V. I. Vettegren, E. Korsukov, and I. I. Novak, “Fracture,” P. L. Pratt, Ed., Chapman & Hall, New York, N.Y., 1969.
A. Peterlin, J. Macromol. Sci. Phys., B6, 583 (1972).
A. Peterlin, Int. J. Fracture, 11, 761 (1975).
R. Borart and R. Hosemann, Kolloid Z., 186, 16 (1962).
W. Dollbopf, H. P. Grossmann, and U. Leute, Colloid Polym. Sci., 259, 267 (1981).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hosoda, S., Uemura, A. Effect of the Structural Distribution on the Mechanical Properties of Linear Low-Density Polyethylenes. Polym J 24, 939–949 (1992). https://doi.org/10.1295/polymj.24.939
Issue date:
DOI: https://doi.org/10.1295/polymj.24.939
Keywords
This article is cited by
-
A thermal method for quantitatively determinating the content of short chain branching in ethylene/α-olefin copolymers
Journal of Thermal Analysis and Calorimetry (2012)
-
Mechanical properties of ethylene-α-olefin copolymers
Journal of Materials Science (1996)


