Abstract
The methods of dialysis equilibrium and static light scattering were used to study the properties of dilute solutions of sodium poly(styrenesulfonate) (Mw=3.5×105 g mol−1) at various ionic strengths, I. The dialysis equilibrium technique yielded the degrees of counterion condensation which are in good agreement with the theoretical predictions of Manning. Radii of gyration and second virial coefficients were determined by means of static light scattering. The experimental values of A2 were compared to theoretical ones calculated for sphere and worm-like structurated polyions. For both models the agreement is qualitatively satisfactory but quantitatively worse. Best results are obtained if the theoretical expression for the worm-like polyion is corrected by taking into account chain flexibility. The ionic strength dependence of the radius of gyration, <S>z, was interpreted in terms of an increase of the electrostatic part of the persistence length, le1, as the ionic strength is lowered. Eventually, <S>z, and le1 reach limiting values both at very low and as well at very high ionic strengths, I.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
R. L. Letsinger and T. J. Savereide, J. Am. Chem. Soc., 84, 3122 (1962).
M. Ishikawa, J. Phys. Chem., 81, 2053 (1977).
M. Sato, Y. Inaki, and K. Takemoto, J. Polym. Sci., Polym. Chem., 15, 2059 (1977).
E. Nordmeier and W. Dauwe, Polym. J., 23, No. 11 (1991).
J. Granot, J. Feigon and D. R. Kearns, Biopolymers, 21, 181 (1982).
J. Granot and D. R. Kearns, Biopolymers, 21, 219 (1982).
J. Hen and U. P. Strauss, J. Phys. Chem., 78, 1013 (1974).
H. Magdelenat, P. Turr, and M. Chemla, Biopolymers, 18, 187 (1979).
T. A. Orofino and P. J. Flory, J. Phys. Chem., 63, 283 (1959).
T. Nicolai and M. Mandel, Macromolecules, 22, 438 (1989).
J. Skolnick and M. Fixman, Macromolecules, 10, 944 (1977).
G. S. Manning, Quart. Rev. Biophysics, 11, 179 (1978).
R. A. Robinson and R. H. Stokes, “Electrolyte Solutions”, Butterworth’s, London, 1970.
E. Nordmeier and M. D. Lechner, Polym. J., 21, 623 (1989).
B. H. Zimm, J. Chem. Phys., 16, 1093 (1948).
G. S. Greschner, “Maxwellgleichungen,” Hüthig & Wepf, Basel, 1982.
M. Nagasawa and A. Takahashi, in “Light Scattering from Polymer Solutions,” M. B. Huglin, Ed., Academic Press, New York, 1972.
O. Glatter and O. Kratky, “Small Angle X-ray Scattering,” Academic Press, London, 1982.
C. Tanford, “Physical Chemistry of Macromolecules,” John Wiley and Sons, Inc., New York, N.Y., 1961.
G. S. Manning, in “Polyelectrolytes”, E. Selegny, Ed., Reidel Publishing, Dordrecht, Holland, 1974.
S. L. Brenner and A. V. Parsegian, Biophys. J., 17, 327 (1976).
D. Stigter, Biopolymers, 16, 1435 (1977).
A. Stroobants, H. N. Lekkerkerker, and T. Odijk, Macromolecules, 19, 2232 (1986).
M. Ragnetti, Ph.D. thesis, Mainz (1984).
H. Vink, Makromol. Chem., 131, 133 (1970).
J. Cohen, Z. Priel, and Y. Rabin, J. Chem. Phys., 88, 7111 (1988).
J. Yamanaka, H. Matsuoka, H. Kitano, M. Hasegawa, and N. Ise, J. Am. Chem. Soc., 112, 587 (1990).
H. Yoshida, K. Ito, and N. Ise, J. Am. Chem. Soc., 112, 592 (1990).
H. Yamakawa, “Modern Theory of Polymer Solutions,” Harper and Row, New York, N.Y., 1969.
O. Kratky and G. Porod, Rec. Trav. Chem. Pays-Bas, 68, 1106 (1949).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Nordmeier, E., Dauwe, W. Studies of Polyelectrolyte Solutions II. The Second Virial Coefficient and the Persistence Length. Polym J 24, 229–238 (1992). https://doi.org/10.1295/polymj.24.229
Issue date:
DOI: https://doi.org/10.1295/polymj.24.229


