Abstract
Core-shell type sulfonated polyaniline (SPAN)-iron oxide nanoparticles (IONP) composites (IONP-SPAN-NC) were prepared. The interactions between the positve and negative charges on the surface of IONP and sulfonic acid and amine groups, respectively, in SPAN form the basis for core-shell structure for the composite. Sulfonated polyaniline hollow spheres (SPAN-HS) were generated by preferential dissolution of IONP from the composite. TEM photograph of IONP-SPAN-NC reveals that IONPs are ‘glued’ to SPAN chains and hollow spheres are formed on removal of IONP. Morphology, optical and magnetic properties of the IONP-SPAN-NC and SPAN-HS were compared.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
J. C. Chiang and A. G. MacDiarmid, Synth. Met., 13, 193 (1986).
A. G. MacDiarmid, Angew. Chem., Int. Ed., 40, 2581 (2001).
J. M. Yeh, S. J. Liou, C. Y. Lai, P. C. Wu, and T. Y. Tsai, Chem. Mater., 13, 1131 (2001).
D. Chaudhuri, A. Kumar, I. Rudra, and D. D. Sarma, Adv. Mater., 13, 1548 (2001).
W. Lu, E. Smela, P. Adams, G. Zuccarello, and B. R. Mattes, Chem. Mater., 16, 1615 (2004).
Y. Jiang and A. J. Epstein, J. Am. Chem. Soc., 112, 2800 (1990).
X. L. Wei, M. Fahlman, and A. J. Epstein, Macromolecules, 32, 3114 (1999).
X. Zhang, J. Zhang, Z. Liu, and C. Robinson, Chem. Commun., 16, 1852 (2004).
C. R. Martin, Chem. Mater., 8, 1739 (1996).
C. W. Wang, Z. Wang, M. K. Li, and H. L. Li, Chem. Phys. Lett., 341, 431 (2001).
H. J. Qiu and M. X. Wan, J. Polym. Sci., Part A: Polym. Chem., 39, 3485 (2001).
S. J. Choi and S. M. Park, Adv. Mater., 12, 1547 (2000).
D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996).
H. X. He, C. Z. Li, and N. J. Tao, Appl. Phys. Lett., 78, 811 (2001).
M. D. Butterworth, S. A. Bell, S. P. Armes, and A. W. Simpson, J. Colloid Interface Sci., 183, 91 (1996).
H. X. Guo and X. P. Zhao, Opt. Mater., 22, 39 (2003).
K. P. Lee, A. M. Showkat, A. Gopalan, S. H. Kim, and S. H. Choi, Macromolecules, 38, 364 (2005).
A. M. Showkat, K. P. Lee, A. Gopalan, K. S. Kim, S. H. Choi, and H. D. Kong, Polymer, 46, 1804 (2005).
F. Caruso, Adv. Mater., 13, 11 (2001).
A. Imhof, Langmuir, 17, 3579 (2001).
X. C. Guo and P. Dong, Langmuir, 15, 5535 (1999).
M. J. Percy, C. Barthet, J. C. Lobb, M. A. Khan, S. F. Lascelles, M. Vamvakaki, and S. P. Armes, Langmuir, 16, 6913 (2000).
I. S. Pastoriza, B. Scholer, and F. Caruso, Adv. Funct. Mater., 11, 122 (2001).
F. Caruso, M. Spasova, A. Susha, M. Giersig, and R. A. Caruso, Chem. Mater., 13, 109 (2001).
G. Kumaraswamy, A. M. Dibaj, and F. Caruso, Langmuir, 18, 4150 (2002).
L. Xu, W. Zhang, Y. Ding, Y. Peng, S. Zhang, W. Yu, and Y. Qian, J. Phys. Chem. B., 108, 10859 (2004).
Y. S. Kang, S. Risbud, J. F. Rabolt, and P. Stroev, Chem. Mater., 8, 2209 (1996).
S. Morup, F. Modker, P. V. Hendriksen, and S. Linderoth, Phys. Rev. B, 52, 287 (1995).
L. Zhang, G. C. Papaefthymiou, and J. Y. Ying, J. Appl. Phys., 81, 6992 (1997).
J. L. Jambor and J. E. Dutrizac, Chem. Rev., 98, 2549 (1998).
“Nanophase Materials,” E. Tronc, J. P. Jolivert, G. C. Hadjipanayis, and P. W. Siegel, Ed., Netherlands, 1994, p 21.
H. P. Klong and L. E. Alexander, “X-Ray Diffraction Procedures for Crystalline and Amorphous Materials,” Wiley, New York, 1954.
J. P. Pouget, M. E. Jozefowicz, A. J. Epstein, X. Tang, and A. G. MacDiarmid, Macromolecules, 24, 779 (1991).
Y. B. Moon, Y. Cao, P. Smith, and A. J. Heeger, Polym. Commun., 30, 196 (1991).
E. Emine, S. Mehmet, and K. Meral, Polym. Int., 39, 153 (1996).
A. R. Hopkins, P. G. Rasmussen, and R. A. Basheer, Macromolecules, 29, 7838 (1996).
V. Prevost, A. Petit, and F. Pla, Synth. Met., 104, 79 (1999).
K. Suri, S. Annapoorni, R. P. Tandon, and N. C. Mehra, Synth. Met., 126, 137 (2002).
B. H. Sohn and R. E. Cohen, Chem. Mater., 9, 9264 (1997).
T. Nguyen and A. Diaz, Adv. Mater., 6, 858 (1994).
“JCPPS Powder Diffraction File International Center for Diffraction Data, Fe3O4,” Newtown Square, PA, 1980.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Reddy, K., Lee, KP., Gopalan, A. et al. Facile Synthesis of Hollow Spheres of Sulfonated Polyanilines. Polym J 38, 349–354 (2006). https://doi.org/10.1295/polymj.38.349
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1295/polymj.38.349
Keywords
This article is cited by
-
Density functional theory calculations on the grafting copolymerization of 2-substituted aniline onto chitosan
Polymer Bulletin (2020)
-
Stabilization and Dispersion of ZnO Nanoparticles in PVA Matrix
Journal of Inorganic and Organometallic Polymers and Materials (2020)
-
In situ synthesis and characterization of polyaniline/prussian blue/zinc oxide nanocomposite
Polymer Bulletin (2019)
-
Synthesis and chemical properties of pyrophosphoric acid-doped polyaniline and copolymers of o-phenylenediamine with aniline and 3,4-ethylenedioxythiophene
Polymer Bulletin (2019)
-
Physical properties of poly[(thiophene-2,5-diyl)-co-para-chloro benzylidene] doped with cobalt sulphate: synthesis and characterization
Polymer Bulletin (2018)


