Abstract
The helix–coil transformations of block copolymers composed of poly(γ-benzyl-L-glutamate) (PBLG) and polystyrene (PS), in which PS was attached to either the N terminus (PBLGn-N-PSm) or the C terminus (PSn-C-PBLGm) of PBLG, were investigated in trifluoroacetic acid (TFA)–chloroform mixtures with TFA concentrations in the range of 0.7–10 vol%. The helical content (fH) estimated from 1H nuclear magnetic resonance measurements indicated that the PBLG segment in PBLG55-N-PS160 underwent a gradual helix–coil transformation from fH=1 to fH=0.75 over the range of 3.6–5.7 vol% TFA and then a drastic transformation to fH=0 at 9.5 vol% TFA, in a manner similar to that of the PBLG55 homopolymer. In PS120-C-PBLG55, the helical deformation of the PBLG segment was observed by adding a very small amount of TFA (0.7–3.6 vol%), followed by gradual and drastic transformations at higher TFA concentrations. The results indicate that the conformational stability of the C terminus in a PBLG chain differs from that of the N terminus. Transformations of PBLG/PS block copolymers with various molecular weights and compositions were also studied.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Klok, H.- A. Peptide/protein-synthetic polymer conjugates: quo vadis. Macromolecules 42, 7990–8000 (2009).
Lecommandoux, S., Klok, H.- A. & Schlaad, H. in Block Copolymers in Nanoscience (ed. Lazzari, M., Liu, G., & Lecommandoux, S.) Ch. 6, 117–150 (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006).
Gallot, B. Comb-like and block liquid crystalline polymers for biological applications. Prog. Polym. Sci. 21, 1035–1088 (1996).
Ding, W., Lin, S., Lin, J. & Zhang, L. Effect of chain conformational change on micelle structures: experimental studies and molecular dynamics. J. Phys. Chem. B 112, 776–783 (2008).
Rodríguez-Hernández, J. & Lecommandoux, S. Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers. J. Am. Chem. Soc. 127, 2026–2027 (2005).
Klok, H.- A., Langenwalter, J. F. & Lecommandoux, S. Self-assembly of peptide-based diblock oligomers. Macromolecules 33, 7819–7826 (2000).
Lecommandoux, S., Achard, M.- F., Langenwalter, J. F. & Klok, H.- A. Self-assembly of rod-coil diblock oligomers based on α-helical peptides. Macromolecules 34, 9100–9111 (2001).
Doig, A. J. Recent advances in helix-coil theory. Biophys. Chem. 101–102, 281–293 (2002).
Cammas, S., Harada, A., Nagasaki, Y. & Kataoka, K. Poly(ethylene oxide-co-β-benzyl L-aspartate) block copolymers: influence of the poly(ethylene oxide) block on the conformationof the poly(β-benzyl L-aspartate) segment in organic solvents. Macromolecules 29, 3227–3231 (1996).
Harada, A., Cammas, S. & Kataoka, K. Stabilized α-helix structure of poly(L-lysine)-block-poly(ethylene glycol) in aqueous medium through supramolecular assembly. Macromolecules 29, 6183–6188 (1996).
Pechar, M., Kopeèková, P., Joss, L. & Kopeèek, J. Associative diblock copolymers of poly(ethylene glycol) and coiled-coil peptides. Macromol. Biosci. 2, 199–206 (2002).
Vandermeulen, G. W. M., Tziatzios, C. & Klok, H.- A. Reversible self-organization of poly(ethylene glycol)-based hybrid block copolymers mediated by a de novo four-stranded α-helical coiled coil motif. Macromolecules 36, 4107–4114 (2003).
Hamley, I. W., Ansari, I. A., Castelletto, V., Nuhn, H., Rösler, A. & Klok, H.- A. Solution self-assembly of hybrid block copolymers containing poly(ethylene glycol) and amphiphilic β-strand peptide sequences. Biomacromolecules 6, 1310–1315 (2005).
Kugo, K., Ohji, A., Uno, T. & Nishino, J. Synthesis and conformations of A-B-A tri-block copolymers with hydrophobic poly(γ-benzyl L-glutamate) and hydrophilic poly(ethylene oxide). Polym. J. 19, 375–381 (1987).
Itoh, T., Iwai, T., Ihara, E. & Inoue, K. Conformational transformation of poly(γ-phenetyl-L-aspartate) in block copolymer with polystyrene in 1,1,2,2-tetrachloroethane. Polym. J. 39, 853–860 (2007).
Steigman, J., Verdini, A. S., Montagner, C. & Strasorier, L. Protonation of peptides. II. Protonation of an amide and of a diamide in dichloroacetic acid, and the behavior of poly(γ-benzyl-L-glutamate) in dichloroacetic acid and in some mixed solvents. J. Am. Chem. Soc. 91, 1829–1836 (1969).
Markley, J. L., Meadows, D. H. & Jardetzky, O. Nuclear magnetic resonance studies of helix-coil transitions in polyamino acids. J. Mol. Biol. 27, 25–40 (1967).
Bradbury, E. M., Crane-Robinson, C., Goldman, H. & Rattle, H. W. E. Proton magnetic resonance and the helix–coil transition. Nature 217, 812–816 (1968).
Bradbury, J. H. & Fenn, M. D. Helix to coil transition in poly-L-amino acids. II. N.M.R. study of model compounds and poly-γ-benzyl-L-glutamate. Aust. J. Chem. 22, 357–371 (1969).
Bradbury, E. M., Crane-Robinson, C. & Rattle, H. W. E. High resolution N.M.R. studies of poly-γ-benzyl-L-glutamate: effect of polydispersity and molecular weight. Polymer 11, 277–286 (1970).
Nagayama, K. & Wada, A. 220 MHz PMR of monodisperse (PBLG) at the helix—coil transition region. Chem. Phys. Lett. 16, 50–51 (1972).
Crespo, J. S., Lecommandoux, S., Borsali, R., Klok, H.- A. & Soldi, V. Small-angle neutron scattering from diblock copolymer poly(styrene-d8)-b-poly(γ-benzyl L-glutamate) solutions: rod-coil to coil-coil transition. Macromolecules 36, 1253–1256 (2003).
Tian, H. Y., Deng, C., Chen, X. S. & Jing, X. B. Biodegradable cationic PEG–PEI–PBLG hyperbranched block copolymer: synthesis and micelle characterization. Biomaterials 26, 4209–4217 (2005).
Daly, W. H. & Poche, D. The preparation of N-carboxyanhydrides of α-amino acids using bis(trichloromethyl)carbonate. Tetrahedron Lett. 29, 5859–5862 (1988).
Matyjaszewski, K. & Xia, J. Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001).
Ullman, R. On the controversy over “fast” and “slow” helix-coil transition rates in polypeptides. Biopolymers (Peptide Science) 9, 471–483 (1970).
Aurora, R. & Rose, G. D. Helix capping. Protein Sci. 7, 21–38 (1998).
Acknowledgements
We thank the Venture Business Laboratory of Ehime University for conducting the NMR measurements.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Itoh, T., Hatanaka, T., Ihara, E. et al. Helix–coil transformation of poly(γ-benzyl-L-glutamate) with polystyrene attached to the N or C terminus in trifluoroacetic acid–chloroform mixtures. Polym J 44, 189–194 (2012). https://doi.org/10.1038/pj.2011.113
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2011.113
Keywords
This article is cited by
-
The orientational orders of poly(β-phenethyl l-aspartate) in two opposite α-helical form: a molecular dynamic simulation
Monatshefte für Chemie - Chemical Monthly (2017)
-
Progress in silica polypeptide composite colloidal hybrids: from silica cores to fuzzy shells
Colloid and Polymer Science (2014)


