Abstract
Poly(ɛ-caprolactone)2-b-poly(L-lactide)2 miktoarm block copolymers were successfully synthesized via ring-opening polymerization using pentaerythritol as the initiator and a protection–deprotection procedure. 1H nuclear magnetic resonance (1H NMR) and size exclusion chromatography (SEC) were employed to characterize the miktoarm structure, molecular weight and molecular weight distribution. The microspheres of poly(ɛ-caprolactone)2-b-poly(L-lactide)2 ((PCL)2-b-(PLLA)2) were produced by an oil-in-water emulsion solvent extraction/evaporation method and studied with scanning electron microscopy (SEM). The hydrolytic degradation of microspheres with different architectures and compositions was performed at 37 °C in a phosphate-buffered saline solution (pH=7.4). The weight loss of the microspheres was strongly affected by the molecular architecture, chain length and composition. The compositional, or molar ratio, changes were monitored during the degradation using 1H NMR, SEC, differential scanning calorimetry and SEM, all of which suggested that the degradation proceeded from the surface to the interior and could be described using a combined degradation model with surface erosion and bulk degradation.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Woodruff, M. A. & Hutmacher, D. W. The return of a forgotten polymer - polycaprolactone in the 21st century. Prog. Polym. Sci 35, 1217–1256 (2010).
Pan, P. J. & Inoue, Y. Polymorphism and isomorphism in biodegradable polyesters. Prog. Polym. Sci. 34, 605–640 (2009).
Albertsson, A. C. & Varma, I. K. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4, 1466–1486 (2003).
Nouvel, C., Dubios, P., Dellacherie, E. & Six, J. L. Controlled synthesis of amphiphilic biodegradable polylactide-grafted dextran copolymers. J. Polym. Sci. Pol. Chem. 42, 2577–2588 (2004).
Numata, K., Srivastava, R. K., Wistrand, A. F., Albertsson, A. C., Doi, Y. & Abe, H. Branched Poly(lactide) synthesized by enzymatic polymerization: effects of molecular branches and stereochemistry on enzymatic degradation and alkaline hydrolysis. Biomacromolecules 8, 3115–3125 (2007).
Xu, X. L., Chen, X. S., Liu, A. X., Hong, Z. K. & Jing, X. B. Electrospun Poly(l-lactide)-grafted hydroxyapatite/poly(l-lactide) nanocomposite fibers. Eur. Polym. J. 43, 3187–3196 (2007).
Tokiwa, Y. & Calabia, B. P. Biodegradability and biodegradation of polyesters. J. Polym. Environ. 15, 259–267 (2007).
Kunioka, M., Ninomiya, F. & Funabashi, M. Novel Evaluation method of biodegradabilities for oil-based polycaprolactone by naturally occurring radiocarbon-14 concentration using accelerator mass spectrometry based on ISO 14855-2 in controlled compost. Polym. Degrad. Stab. 92, 1279–1288 (2007).
Hou, Y., Chen, J., Sun, P. J., Gan, Z. H. & Zhang, G. Z. In situ investigations on enzymatic degradation of poly(ɛ-caprolactone). Polymer (Guildf) 48, 6348–6353 (2007).
Duda, A., Biela, T., Libiszowski, J., Penczek, S., Dubois, P., Mecerreye, D. & Jerome, R. Block and random copolymers of ɛ-caprolactone. Polym. Degrad. Stab. 59, 215–222 (1998).
Ikada, Y. & Tsuji, H. Biodegradable Polyesters for medical and ecological applications. Macromol. Rapid. Commun. 21, 117–132 (2000).
Qian, H. T., Bei, J. Z. & Wang, S. G. Synthesis, characterization and degradation of ABA block copolymer of L-lactide and ɛ-caprolactone. Polym. Degrad. Stab. 68, 423–429 (2000).
Zhao, Z. X., Yang, L., Hu, Y. F., He, Y., Wei, J. & Li, S. M. Enzymatic degradation of block copolymers obtained by sequential ring opening polymerization of L-lactide and ɛ-caprolactone. Polym. Degrad. Stab. 92, 1769–1777 (2007).
Huang, M. H., Li, S. M. & Vert, M. Synthesis and degradation of PLA–PCL–PLA triblock copolymer prepared by successive polymerization of ɛ-caprolactone and DL-lactide. Polymer (Guildf) 45, 8675–8681 (2004).
Huang, M. H., Li, S. M., Hutmacher, D. W., Coudane, J. & Vert, M. Degradation characteristics of poly(ɛ-caprolactone)-based copolymers and blends. J. Appl. Polym. Sci. 102, 1681–1687 (2006).
Liu, F., Zhao, Z. X., Yang, J., Wei, J. & Li, S. M. Enzyme-catalyzed degradation of poly(l-lactide)/poly(ɛ-caprolactone) diblock, triblock and four-armed copolymers. Polym. Degrad. Stab. 94, 227–233 (2009).
Xie, W. Y., Jiang, N. & Gan, Z. H. Effects of multi-arm structure on crystallization and biodegradation of star-shaped poly(ɛ-caprolactone). Macromol. Biosci. 8, 775–784 (2008).
Hoskins, J. N. & Grayson, S. M. Synthesis and degradation behavior of cyclic poly(ɛ-caprolactone). Macromolecules 42, 6406–6413 (2009).
Hao, Q. H., Li, F. X., Li, Q. B., Li, Y., Jia, L., Yang, J., Fang, Q. & Cao, A. M. Preparation and crystallization kinetics of new structurally well-defined star-shaped biodegradable poly(l-lactide)s initiated with diverse natural sugar alcohols. Biomacromolecules 6, 2236–2247 (2005).
Dong, C. M., Guo, Y. Z., Qiu, K. Y., Gu, Z. W. & Feng, X. D. In vitro degradation and controlled release behavior of D,L-PLGA50 and PCL-b-D,L-PLGA50 copolymer microspheres. J. Control. Release. 107, 53–64 (2005).
Garkhal, K., Verma, S., Jonnalagadda, S. & Kumar, N. Fast degradable poly(L-lactide-co-ɛ-caprolactone) microspheres for tissue engineering: synthesis, characterization, and degradation behavior. J. Polym. Sci. Pol. Chem. 45, 2755–2764 (2007).
Xie, Z. G., Lu, C. H., Chen, X. S., Chen, L., Wang, Y., Hu, X. L., Shi, Q. & Jing, X. B. Synthesis and characterization of novel poly(ester carbonate)s based on pentaerythritol. J. Polym. Sci. Pol. Chem. 45, 1737–1745 (2007).
Pouëssel, A. A., Bibby, D. C., Julienne, M. C. V., Hindré, F. & Benoît, J. P. A novel in vitro delivery system for assessing the biological integrity of protein upon release from PLGA microspheres. Pharm. Res. 19, 1046–1051 (2002).
Bae, S. E., Son, J. S., Park, K. & Han, D. K. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. J. Control. Release 133, 37–43 (2009).
Dubois, P., Barakat, I., Jerome, R. & Teyssie, B. Macromolecular engineering of polylactones and polylactides. 12. study of the depolymerization reactions of poly(ɛ-caprolactone) with functional aluminum alkoxide end groups. Macromolecules 26, 4407–4412 (1993).
Takei, T., Yoshida, M., Hatate, Y., Shiomori, K. & Kiyoyama, S. Preparation of polylactide/poly(ɛ-caprolactone) microspheres enclosing acetamiprid and evaluation of release behavior. Polym. Bull 61, 391–397 (2008).
Chen, D. R., Chen, H. L., Bei, J. Z. & Wang, S. G. Morphology and biodegradation of microspheres of polyester-polyether block copolymer based on polycaprolactone/polylactide/poly(ethylene oxide). Polym. Int. 49, 269–276 (2000).
Chen, C. C., Chueh, J. Y., Tseng, H., Huang, H. M. & Lee, S. Y. Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24, 1167–1173 (2003).
Burkersroda, F. V., Schedl, L. & Gopferich, A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23, 4221–4231 (2002).
Park, J. H., Ye, M. L. & Park, K. Biodegradable polymers for microencapsulation of drugs. Molecules 10, 146–161 (2005).
Gopferich, A. Polymer bulk erosion. Macromolecules 30, 2598–2604 (1997).
Acknowledgements
This research was supported by the Fundamental Research Funds for the Central Universities (WD0913008, WD1014017), the ‘Shu Guang’ Project of Shanghai Municipal Education Commission, the Natural Science Foundation of Shanghai (11ZR1409200), the National Natural Science Foundation of China (51103041), the Shanghai Leading Academic Discipline Project (B502), the Shanghai Key Laboratory Project (08DZ2230500) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Zhang, X., Xiao, Y. & Lang, M. Synthesis and degradation behavior of miktoarm poly(ɛ-caprolactone)2-b-poly(L-lactone)2 microspheres. Polym J 45, 420–426 (2013). https://doi.org/10.1038/pj.2012.166
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2012.166
Keywords
This article is cited by
-
A hybrid coating of polydopamine and nano-hydroxyapatite enhances surface properties of 3D printed poly(lactic-co-glycolic acid) scaffolds
Journal of Materials Science (2022)
-
PLA/EVA/Teak Wood Flour Biocomposites for Packaging Application: Evaluation of Mechanical Performance and Biodegradation Properties
Journal of Packaging Technology and Research (2018)


