Abstract
This article reviews recent advances in the creation of functional spaces with core-functionalized star polymers and single-chain folding/crosslinked polymers via living radical polymerization. Various core-functionalized star polymers were efficiently prepared with functional linking agents and monomers to perform unique functions. For example, they can serve as nanoreactors for active and robust catalysis in organic reactions and polymerization and as nanocapsules for selective and stimuli-responsive molecular recognition. Single-chain folding polymers were obtained from the self-folding of amphiphilic random copolymers bearing hydrophilic poly(ethylene glycol) chains and hydrophobic alkyl pendants in water, resulting in unimer micelles with dynamic hydrophobic domains. The folded structure could be further fixed via the intramolecular crosslinking of the hydrophobic interior. In addition, cation template-assisted cyclopolymerization and concurrent tandem living radical polymerization with in situ monomer transesterification were also developed for the one-pot synthesis of cyclopolymers with large in-chain cavities and gradient and sequence-controlled copolymers.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Grayson, S. M. & Fréchet, J. M. J. Convergent dendrons and dendrimers: from synthesis to applications. Chem. Rev. 101, 3819–3867 (2001).
Jansen, J. F. G. A., de Brabander-van den Berg, E. M. M. & Meijer, E. W. Encapsulation of guest molecules into a dendritic box. Science 266, 1226–1229 (1994).
Nishiyama, N. & Kataoka, K. Nanostructured devices based on block copolymer assemblies for drug delivery: designing structures for enhanced drug function. Adv. Polym. Sci. 193, 67–101 (2006).
van Dongen, S. F. M., de Hoog, H.-P. M., Peters, R. J. R. W., Nallani, M., Nolte, R. J. M. & van Hest, J. C. M. Biohybrid polymer capsules. Chem. Rev. 109, 6212–6274 (2009).
Walther, A. & Müller, A. H. E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113, 5019–5261 (2013).
Elsabahy, M. & Wooley, K. L. Strategies toward well-defined polymer nanoparticles inspired by nature: chemistry versus versatility. J. Polym. Sci. A Polym. Chem. 50, 1869–1880 (2012).
Kabanov, A. V. & Vinogradov, S. V. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew. Chem. Int. Ed. 48, 5418–5429 (2009).
Terashima, T. & Sawamoto, M. In: Progress in Controlled Radical Polymerization: Materials and Applications. Matyjaszewski K., Sumerlin B. S., Tsarevski N. V., (eds). ACS Symposium Series 1101 pp 65–80 (American Chemical Society, Washington, DC, 2012).
Terashima, T. in: Encyclopedia of Polymer Science and Technology 4th edn Seidel A., (ed). pp 1–31 (John Wiley & Sons Inc., 2013).
Terashima, T. Functional star polymers via living radical polymerization: designer functional nanospaces. Kobunshi Ronbunshu 70, 432–448 (2013).
Lutz, J.-F., Ouchi, M., Liu, D. R. & Sawamoto, M. Sequence-controlled polymers. Science 341, 1238149 (2013).
Ouchi, M., Terashima, T. & Sawamoto, M. Precision control of radical polymerization via transition metal catalysis: from dormant species to designed catalysts for precision functional polymers. Acc. Chem. Res. 41, 1120–1132 (2008).
Ouchi, M., Terashima, T. & Sawamoto, M. Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem. Rev. 109, 4963–5050 (2009).
Tsarevsky, N. & Matyjaszewski, K. ‘Green’ atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials. Chem. Rev. 107, 2270–2299 (2007).
Matyjaszewski, K. & Tsarevsky, N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 1, 276–288 (2009).
Matyjaszewski, K. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45, 4015–4039 (2012).
Satoh, K. & Kamigaito, M. Stereospecific living radical polymerization: dual control of chain length and tacticity for precision polymer synthesis. Chem. Rev. 109, 5120–5156 (2009).
Kamigaito, M. Recent developments in metal-catalyzed living radical polymerization. Polym. J. 43, 105–120 (2011).
Hawker, C. J., Bosman, A. W. & Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 101, 3661–3688 (2001).
Rosen, B. M. & Percec, V. Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization. Chem. Rev. 109, 5069–5119 (2009).
Moad, G., Rizzardo, E. & Thang, S. H. Radical addition-fragmentation chemistry in polymer synthesis. Polymer 49, 1079–1131 (2008).
Yamago, S. Precision polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain-transfer agents. Chem. Rev. 109, 5051–5068 (2009).
Blencowe, A., Tan, J. F., Goh, T. K. & Qiao, G. G. Core cross-linked star polymers via controlled radical polymerisation. Polymer 50, 5–32 (2009).
Gao, H. & Matyjaszewski, K. Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels. Prog. Polym. Sci. 34, 317–350 (2009).
Gao, H. Development of star polymers as unimolecular containers for nanomaterials. Macromol. Rapid Commun. 33, 722–734 (2012).
Ouchi, M., Badi, N., Lutz, J.-F. & Sawamoto, M. Single-chain technology using discrete synthetic macromolecules. Nat. Chem. 3, 917–924 (2011).
Altintas, O. & Barner-Kowollik, C. Single chain folding of synthetic polymers by covalent and non-covalent interactions: current status and future perspectives. Macromol. Rapid Commun. 33, 958–971 (2012).
Sanchez-sanchez, A., Pérez-Baena, I. & Pomposo, J. A. Advances in click chemistry for single-chain nanoparticle construction. Molecules 18, 3339–3355 (2013).
Terashima, T., Motokawa, R., Koizumi, S., Sawamoto, M., Kamigaito, M., Ando, T. & Hashimoto, T. In situ and time-resolved small-angle neutron scattering observation of star polymer formation via arm-linking reaction in ruthenium-catalyzed living radical polymerization. Macromolecules 43, 8218–8232 (2010).
Baek, K.-Y., Kamigaito, M. & Sawamoto, M. Star-shaped polymers by metal-catalyzed living radical polymerization. 1. Design of Ru(II)-based systems and divinyl linking agents. Macromolecules 34, 215–221 (2001).
Bosman, A. W., Vestberg, R., Heumann, A., Fréchet, J. M. J. & Hawker, C. J. A modular approach toward functionalized three-dimensional macromolecules: from synthetic concepts to practical applications. J. Am. Chem. Soc. 125, 715–728 (2003).
Helms, B., Guillaudeu, S. J., Xie, Y., McMurdo, M., Hawker, C. J. & Fréchet, J. M. J. One-pot reaction cascades using star polymers with core-confined catalysts. Angew. Chem. Int. Ed. 44, 6384–6387 (2005).
Chi, Y., Scroggins, S. T. & Fréchet, J. M. J. One-pot multi-component asymmetric cascade reactions catalyzed by soluble star polymers with highly branched non-interpenetrating catalytic cores. J. Am. Chem. Soc. 130, 6322–6323 (2008).
Gao, H. & Matyjaszewski, K. Synthesis of miktoarm star polymers via ATRP using the ‘in-out’ method: determination of initiation efficiency of star macroinitiators. Macromolecules 39, 7216–7223 (2006).
Shibata, T., Kanaoka, S. & Aoshima, S. Quantitative synthesis of star-shaped poly(vinyl ether)s with a narrow molecular weight distribution by living cationic polymerization. J. Am. Chem. Soc. 128, 7497–7504 (2006).
Baek, K.-Y., Kamigaito, M. & Sawamoto, M. Core-functionalized star polymers by transition metal-catalyzed living radical polymerization. 1. Synthesis and characterization of star polymers with PMMA arms and amide cores. Macromolecules 34, 7629–7635 (2001).
Terashima, T., Kamigaito, M., Baek, K.-Y., Ando, T. & Sawamoto, M. Polymer catalysts from polymerization catalysts: direct encapsulation of metal catalyst into star polymer core during metal-catalyzed living radical polymerization. J. Am. Chem. Soc. 125, 5288–5289 (2003).
Terashima, T., Ouchi, M., Ando, T., Kamigaito, M. & Sawamoto, M. Metal-complex-bearing star polymers by metal-catalyzed living radical polymerization: synthesis and characterization of poly(methyl methacrylate) star polymers with Ru(II)-embedded microgel cores. J. Polym. Sci. A Polym. Chem. 44, 4966–4980 (2006).
Terashima, T., Ouchi, M., Ando, T. & Sawamoto, M. Oxidation of sec-alcohols with Ru(II)-bearing microgel star polymer catalysts via hydrogen transfer reaction: unique microgel-core catalysis. J. Polym. Sci. A Polym. Chem. 49, 1061–1069 (2011).
Terashima, T., Nomura, A., Ito, M., Ouchi, M. & Sawamoto, M. Star-polymer-catalyzed living radical polymerization: microgel-core reaction vessel by tandem catalyst interchange. Angew. Chem. Int. Ed. 50, 7892–7895 (2011).
Terashima, T., Nomura, A., Ouchi, M. & Sawamoto, M. Efficient and robust star polymer catalysts for living radical polymerization: cooperative activation in microgel-core reactors. Macromol. Rapid Commun. 33, 833–841 (2012).
Terashima, T., Ouchi, M., Ando, T., Kamigaito, M. & Sawamoto, M. Amphiphilic, thermosensitive ruthenium(II)-bearing star polymer catalysts: one-pot synthesis of PEG armed star polymers with ruthenium(II)-enclosed microgel cores via metal-catalyzed living radical polymerization. Macromolecules 40, 3581–3588 (2007).
Terashima, T., Ouchi, M., Ando, T. & Sawamoto, M. Thermoregulated phase-transfer catalysis via PEG-armed Ru(II)-bearing microgel core star polymers: efficient and reusable Ru(II) catalysts for aqueous transfer hydrogenation of ketones. J. Polym. Sci. A Polym. Chem. 48, 373–379 (2010).
Terashima, T., Ouchi, M., Ando, T. & Sawamoto, M. Transfer hydrogenation of ketones catalyzed by PEG-armed ruthenium-microgel star polymers: microgel-core reaction space for active, versatile and recyclable catalysis. Polym. J. 43, 770–777 (2011).
Koda, Y., Terashima, T., Nomura, A., Ouchi, M. & Sawamoto, M. Fluorinated microgel-core star polymers as fluorous compartments for molecular recognition. Macromolecules 44, 4574–4578 (2011).
Fukae, K., Terashima, T. & Sawamoto, M. Cation-condensed microgel-core star polymers as polycationic nanocapsules for molecular capture and release in water. Macromolecules 45, 3377–3386 (2012).
Hill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S. & Moore, J. S. A field guide to foldamers. Chem. Rev. 101, 3893–4011 (2001).
Morishima, Y., Nomura, S., Ikeda, T., Seki, M. & Kamachi, M. Characterization of unimolecular micelles of random copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate and methacrylamides bearing bulky hydrophobic substituents. Macromolecules 28, 2874–2881 (1995).
Yusa, S., Sakakibara, S., Yamamoto, T. & Morishima, Y. Fluorescence studies of pH-responsive unimolecular micelles formed from amphiphilic polysulfonates possessing long-chain alkyl carboxyl pendants. Macromolecules 35, 10182–10188 (2002).
Deans, R., Ilhan, F. & Rotello, V. M. Recognition-mediated unfolding of a self-assembled polymeric globule. Macromolecules 32, 4956–4960 (1999).
Seo, M., Beck, B. J., Paulusse, J. M. J., Hawker, C. J. & Kim, S. Y. Polymeric nanoparticles via noncovalent cross-linking of linear chains. Macromolecules 41, 6413–6418 (2008).
Foster, E. J., Berda, E. B. & Meijer, E. W. Metastable supramolecular polymer nanoparticles via intramolecular collapse of single polymer chains. J. Am. Chem. Soc. 131, 6964–6966 (2009).
Hosono, N., Gillissen, M. A. J., Li, Y., Sheiko, S. S., Palmans, A. R. A. & Meijer, E. W. Orthogonal self-assembly in folding block copolymers. J. Am. Chem. Soc. 135, 501–510 (2013).
Altintas, O., Lejeune, E., Gerstel, P. & Barner-Kowollik, C. Bioinspired dual self-folding of single polymer chains via reversible hydrogen bonding. Polym. Chem. 3, 640–651 (2012).
Cherian, A. E., Sun, F. C., Sheiko, S. S. & Coates, G. W. Formation of nanoparticles by intramolecular cross-linking: following the reaction progress of single polymer chains by atomic force microscopy. J. Am. Chem. Soc. 129, 11350–11351 (2007).
Schmidt, B. V. K. J., Fechler, N., Falkenhagen, J. & Lutz, J.-F. Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nat. Chem. 3, 234–238 (2011).
Terashima, T., Mes, T., de Greef, T. F. A., Gillissen, M. A. J., Besenius, P., Palmans, A. R. A. & Meijer, E. W. Single-chain folding of polymers for catalytic systems in water. J. Am. Chem. Soc. 133, 4742–4745 (2011).
Gillissen, M. A. J., Terashima, T., Meijer, E. W., Palmans, A. R. A. & Voets, I. K. Sticky supramolecular grafts stretch single polymer chains. Macromolecules 46, 4120–4125 (2013).
Artar, M., Terashima, T., Sawamoto, M., Meijer, E. W. & Palmans, A. R. A. Understanding the catalytic activity of single-chain polymeric nanoparticles in water. J. Polym. Sci. A Polym. Chem. 52, 12–20 (2014).
Terashima, T., Sugita, T., Fukae, K. & Sawamoto, M. Synthesis and single-chain folding of amphiphilic random copolymers in water. Macromolecules 47, 589–600 (2014).
Sugita, T., Matsumoto, K., Terashima, T. & Sawamoto, M. Synthesis of amphiphilic three-armed star random copolymers via living radical polymerization and their unimolecular folding properties in water. Macromol. Symp (submitted).
Giuseppone, N. & Lutz, J.-F. Catalytic accordions. Nature 473, 40–41 (2011).
Terashima, T., Kawabe, M., Miyabara, Y., Yoda, H. & Sawamoto, M. Polymeric pseudo-crown ether for cation recognition via cation template-assisted cyclopolymerization. Nat. Commun. 4, 2321 (2013).
Nakatani, K., Terashima, T. & Sawamoto, M. Concurrent tandem living radical polymerization: gradient copolymers via in situ monomer transformation with alcohols. J. Am. Chem. Soc. 131, 13600–13601 (2009).
Nakatani, K., Ogura, Y., Koda, Y., Terashima, T. & Sawamoto, M. Sequence-regulated copolymers via tandem catalysis of living radical polymerization and in situ transesterification. Am. Chem. Soc 134, 4373–4383 (2012).
Ogura, Y., Terashima, T. & Sawamoto, M. Synchronized tandem catalysis of living radical polymerization and transesterification: methacrylate gradient copolymers with extremely broad glass transition temperature. ACS Macro Lett. 2, 985–989 (2013).
Leadbeater, N. E. & Marco, M. Preparation of polymer-supported ligands and metal complexes for use in catalysis. Chem. Rev. 102, 3217–3274 (2002).
Bergbreiter, D. E., Tian, J. & Hongfa, C. Using soluble polymer supports to facilitate homogeneous catalysis. Chem. Rev. 109, 530–582 (2009).
Terashima, T., Ouchi, M., Ando, T. & Sawamoto, M. In situ hydrogenation of terminal halogen in poly(methyl methacrylate) by ruthenium-catalyzed living radical polymerization: direct transformation of ‘polymerization catalyst’ into ‘hydrogenation catalyst’. J. Am. Chem. Soc. 128, 11014–11015 (2006).
Naota, T., Takaya, H. & Murahashi, S. Ruthenium-catalyzed reactions for organic synthesis. Chem. Rev. 98, 2599–2660 (1998).
Butler, G. B. Cyclopolymerization. J. Polym. Sci. A Polym. Chem. 38, 3451–3461 (2000).
Yokota, K., Haba, O., Satoh, T. & Kakuchi, T. Cyclopolymerization. Chirality induction for the synthesis of chiroselective corand/ionophore ligands. Macromol. Chem. Phys. 196, 2383–2416 (1995).
Tunca, U. & Yagci, Y. Crown ether-containing polymers. Prog. Polym. Sci. 19, 233–286 (1994).
Alexandratos, S. D. & Stine, C. L. Synthesis of ion-selective polymer-supported crown ethers: a review. React. Funct. Polym. 60, 3–16 (2004).
Coates, G. W. & Waymouth, R. M. Enatioselective cyclopolymerization of 1,5-hexadiene catalyzed by chiral zirconocenes: a novel strategy for the synthesis of optically active polymers with chirality in the main chain. J. Am. Chem. Soc. 115, 91–98 (1993).
Ochiai, B., Ootani, Y. & Endo, T. Controlled cyclopolymerization through quantitative 19-membered ring formation. J. Am. Chem. Soc. 130, 10832–10833 (2008).
Matyjaszewski, K., Ziegler, M. J., Arehart, S. V., Grenzta, D. & Pakula, T. Gradient copolymers by atom transfer radical copolymerization. J. Phys. Org. Chem. 13, 775–786 (2000).
Acknowledgements
This research was supported by the Ministry of Education, Science, Sports and Culture through Grants-in-Aid for Creative Scientific Research (18GS0209), Scientific Research (A: 24245026) and Young Scientists (Start up: 19850010, B: 20750091, B: 24750104); the Foundation for the Promotion of Ion Engineering; and by the Mizuho Foundation for the Promotion of Sciences. I deeply thank Professors Mitsuo Sawamoto and Makoto Ouchi (Kyoto University); Masami Kamigaito (Nagoya University); Tsuyoshi Ando (Nara Institute of Science and Technology); E. W. Meijer and Anja, R. A. Palmans (Eindhoven University of Technology) for their assistance and helpful discussions. Finally, I thank all of my collaborators for sharing their experimental data.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Terashima, T. Functional spaces in star and single-chain polymers via living radical polymerization. Polym J 46, 664–673 (2014). https://doi.org/10.1038/pj.2014.57
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2014.57
This article is cited by
-
Development and application of pH-responsive polymers
Polymer Journal (2022)
-
Sequence-controlled polymers via reversible-deactivation radical polymerization
Polymer Journal (2018)
-
Single-chain crosslinked star polymers via intramolecular crosslinking of self-folding amphiphilic copolymers in water
Polymer Journal (2015)


