Abstract
In this review, our recent results on the concurrent cationic vinyl-addition and ring-opening copolymerization of vinyl ethers (VEs) and oxiranes are summarized, with particular emphasis on the strategies required to generate crossover reactions between different types of monomers. Most importantly, carbocation generation via the ring-opening reaction of the oxirane-derived oxonium ion is indispensable for the crossover reaction from oxirane to VE. Specifically, oxiranes with substituents that contribute to stabilizing these carbocations are suitable for concurrent copolymerization. Moreover, weak Lewis bases have been found to affect the frequency of crossover reactions through the promotion of the ring-opening reaction. This article also summarizes concurrent cationic vinyl-addition, ring-opening and carbonyl-addition terpolymerization via the one-way cycle of crossover reactions, the copolymerization of an alkoxyoxirane with VEs through the alkoxy group transfer mechanism, and the long-lived species-mediated cationic polymerization of vinyl monomers and cyclic formals.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Simionescu, C. I., Grigoras, M., Bicu, E. & Onofrei, G. Spontaneous copolymerization of 2-methyl-2-oxazoline and N-phenyl maleimide. Polym. Bull. 14, 79–83 (1985).
Rivas, B. L., Pizarro, G. del C. & Canessa, G. S. Copolymerization via zwitterion 11. N-phenylmaleimide with 2-ethyl-2-oxazoline. Polym. Bull. 19, 123–128 (1988).
Hagiwara, T., Takeda, M., Hamana, H. & Narita, T. Copolymerization of N-phenylmaleimide and propylene oxide initiated with organozinc compounds. Macromolecules 22, 2026–2028 (1989).
Ikeda, Y., Yoshida, Y., Ishihara, K., Hamana, H., Narita, T. & Hagiwara, T. Copolymerization of 3,3,3-trifluoro-1,2-epoxypropane with N-phenylmaleimide using organozinc initiators. Macromol. Rapid Commun. 17, 713–721 (1996).
Yang, H., Xu, J., Pispas, S. & Zhang, G. Hybrid copolymerization of ɛ-caprolactone and methyl methacrylate. Macromolecules 45, 3312–3317 (2012).
Okada, M ., Yamashita, Y. & Ishii, Y. Cationic copolymerization of 1,3-dioxolane and styrene. Makromol. Chem. 94, 181–193 (1966).
Okada, M. & Yamashita, Y. Cationic copolymerization of cyclic formals and vinyl ethers. Makromol. Chem. 126, 266–275 (1969).
Furukawa, J. & Saegusa, T. Polymerization of Aldehydes and Oxides, (Wiley Interscience Publishers, New York, USA, 1963).
Kubisa, P. & Penczek, S. Cationic activated monomer polymerization of heterocyclic monomers. Prog. Polym. Sci. 24, 1409–1437 (1999).
Nuyken, O. & Pask, S. D. Ring-opening polymerization—an introductory review. Polymers 5, 361–403 (2013).
Brocas, A.-L., Mantzaridis, C., Tunc, D. & Carlotti, S. Polyether synthesis: from activated or metal-free anionic ring-opening polymerization of epoxides to functionalization. Prog. Polym. Sci. 38, 845–873 (2013).
Deffieux, A., Carlotti, S., Barrère, A. in Polymer Science: A Comprehensive Reference Vol. 4.07 (eds Matyjaszewski K. & Möller K.) (Elsevier B. V., Amsterdam, Netherlands, 2012).
Kubisa, P. in Polymer Science: A Comprehensive Reference Vol. 4.08 (eds Matyjaszewski K. & Möller K.) (Elsevier B. V., Amsterdam, Netherlands, 2012)
Kanazawa, A. in Encyclopedia of Polymeric Nanomaterials (eds Kobayashi S. & Müllen) 1819–1826 (Springer-Verlag, Berlin Heidelberg, Germany, 2014)
Aoki, S., Fujisawa, K., Otsu, T. & Imoto, M. The copolymerization of the vinyl monomer with a cyclic compound. III. The cationic copolymerization of styrene with substituted ethylene oxides. Bull. Chem. Soc. Jpn. 39, 729–733 (1966).
Minoura, Y. & Mitoh, M. Copolymerization of cyclic ethers with vinyl compounds I. Copolymerization of epichlorohydrin with styrene. Makromol. Chem 99, 186–192 (1966).
Solaro, R., D’Antone, Orsini, M., Andruzzi, F. & Chiellini, E. Hybrid copolymerization of alkyl vinyl ethers with glycidyl ethers. J. Appl. Polym. Sci. 28, 3651–3663 (1983).
Kubisa, P., Vairon, J. P. in Polymer Science: A Comprehensive Reference Vol. 4.10 (eds Matyjaszewski K. & Möller K.) (Elsevier B. V., Amsterdam, Netherlands, 2012).
Sawamoto, M. Modern cationic vinyl polymerization. Prog. Polym. Sci. 16, 111–172 (1991).
Kennedy, J. P. & Ivan, B. Designed Polymers by Carbocationic Macromolecular Engineering: Theory and Practice (Hancer, New York, NY, USA, 1992)
Matyjaszewski, K., Sawamoto, M. in Cationic Polymerizations (ed. Matyjaszewski K.) Ch. 4 (Marcel Dekker, New York, USA, 1996)
Puskas, J. E. & Kaszas, G. Living carbocationic polymerization of resonance-stabilized monomers. Prog. Polym. Sci. 25, 403–452 (2000).
De, P & Faust, R. in Macromolecular Engineering. Precise Synthesis, Materials Properties, Application (eds Matyjaszewski K., Gnanou Y. & Leibler L) Ch. 3 (Wiley-VCH GmbH & Co. KGaA, Weinheim, Germany, 2007)
Goethals, E. J. & Du Prez, F. Carbocationic polymerizations. Prog. Polym. Sci. 32, 220–246 (2007).
Aoshima, S. & Kanaoka, S. A renaissance in living cationic polymerization. Chem. Rev. 109, 5245–5287 (2009).
Kanazawa, A., Kanaoka, S. & Aoshima, S. Concurrent cationic vinyl-addition and ring-opening copolymerization using B(C6F5 3 as a catalyst: copolymerization of vinyl ethers and isobutylene oxide via crossover propagation reactions. J. Am. Chem. Soc. 135, 9330–9333 (2013).
Kanazawa, A., Kanaoka, S. & Aoshima, S. Rational design of oxirane monomers for efficient crossover reactions in concurrent cationic vinyl-addition and ring-opening copolymerization with vinyl ethers. Macromolecules 47, 6635–6644 (2014).
Kanazawa, A. & Aoshima, S. Frequency control of crossover reactions in concurrent cationic vinyl-addition and ring-opening copolymerization of vinyl ethers and oxiranes: specific roles of weak Lewis bases and solvent polarity. Polym. Chem 6, 5675–5682 (2015).
Kanazawa, A. & Aoshima, S. Exclusive one-way cycle sequence control in cationic terpolymerization of general-purpose monomers via concurrent vinyl-addition, ring-opening, and carbonyl-addition mechanisms. ACS Macro. Lett. 4, 783–787 (2015).
Kanazawa, A., Kanda, S., Kanaoka, S. & Aoshima, S. Alkoxyoxirane, a unique cyclic monomer: controlled cationic homopolymerization mediated by long-lived species and copolymerization with vinyl ether via alkoxy group transfer. Macromolecules 47, 8531–8540 (2014).
Shirouchi, T., Kanazawa, A., Kanaoka, S. & Aoshima, S. Cationic copolymerization of vinyl ether and 1,3-dioxepane through concurrent vinyl-addition and ring-opening mechanisms: toward controlled copolymerization mediated by long-lived species. Polym. Prepr. Jpn. 63, 3958–3959 (2014).
Shirouchi, T., Kanazawa, A., Kanaoka, S. & Aoshima, S. Concurrent vinyl-addition and ring-opening cationic copolymerization of vinyl ethers or styrenes with cyclic acetals: toward controlled copolymerization mediated by long-lived species. Polym. Prepr. Jpn. 64, 2Pd012 (2015).
Kim, J. D., Han, G., Jeong, L, S., Park, H.-J., Zee, O. P. & Jung, Y. H. Study of the stability of carbocations by chlorosulfonyl isocyanate reaction with ethers. Tetrahedron 58, 4395–4402 (2002).
Lossing, F. P. & Holmes, J. L. Stabilization energy and ion size in carbocations in the gas phase. J. Am. Chem. Soc. 106, 6917–6920 (1984).
Harwood, H. J. & Ritchey, W. M. The characterization of sequence distribution in copolymers. J. Polym. Sci. B Polym. Lett. 2, 601–607 (1964).
Piers, W. E. & Chivers, T. Pentafluorophenylboranes: from obscurity to applications. Chem. Soc. Rev. 26, 345–354 (1997).
Ishihara, K. & Yamamoto, H. Arylboron compounds as acid catalysts in organic synthetic transformations. Eur. J. Org. Chem 527–538 (1999).
Erker, G. Tris(pentafluorophenyl)borane: a special boron Lewis acid for special reactions. Dalton Trans. 1883–1890 (2005).
Faust, R., Iván, B. & Kennedy, J. P. Living carbocationic polymerization. XXXVIII. On the nature of the active species in isobutylene and vinyl ether polymerization. J. Macromol. Sci. A Chem. 28, 1–13 (1991).
Liu, Q., Wu, Y., Yan, P., Zhang, Y. & Xu, R. Polyisobutylene with high exo-olefin content via β-H elimination in the cationic polymerization of isobutylene with H2O/FeCl3/dialkyl ether initiating system. Macromolecules 44, 1866–1875 (2011).
Dimitrov, P., Emert, J. & Faust, R. Polymerization of isobutylene by AlCl3/ether complexes in nonpolar solvent. Macromolecules 45, 3318–3325 (2012).
Kumar, R., Dimitrov, P., Bartelson, K. J., Emert, J. & Faust, R. Polymerization of isobutylene by GaCl3 or FeCl3/ether complexes in nonpolar solvents. Macromolecules 45, 8598–8603 (2012).
Kagiya, T., Sumida, Y. & Inoue, T. Reactivities of cyclic monomers in cationic copolymerizations. Nucleophilic coordination and ionic ring-opening of the bond. Polym. J. 1, 312–321 (1970).
Gordy, W. Spectroscopic comparison of the proton-attracting properties of liquids. J. Chem. Phys. 7, 93–99 (1939).
Iwatsuki, S., Takigawa, N., Okada, M., Yamashita, Y. & Ishii, Y. Basicity as a factor in the cationic copolymerization of cyclic ethers. J. Polym. Sci. B Polym. Lett. 2, 549–552 (1964).
Laurence, C., Graton, J., Berthelot, M., Besseau, F., Le Questel, J.-Y., Luçon, M., Ouvrard, C., Planchat, A. & Renault, E. An enthalpic scale of hydrogen-bond basicity. 4. Carbon π bases, oxygen bases, and miscellaneous second-row, third-row, and fourth-row bases and a survey of the 4-fluorophenol affinity scale. J. Org. Chem. 75, 4105–4123 (2010).
Symons, M. C. & Thomas, V. K. Solvation of anions by protic solvents. J. Chem. Soc. Faraday Trans. 1, 1891–1897 (1981).
Symons, M. C. R. & Robinson, H. L. A near infrared and NMR spectroscopic study of the solvation of basic aprotic solvents and anions in tert-butanol. Phys. Chem. Chem. Phys. 3, 535–541 (2001).
Kelen, T. & Tüdõs, F. A new improved linear graphical method for determining copolymerization reactivity ratios. React. Kinet. Catal. Lett. 1, 487–492 (1974).
Kennedy, J. P., Kelen, T. & Tüdõs, F. Analysis of the linear methods for determining copolymerization reactivity ratios. II. A critical reexamination of cationic monomer reactivity ratios. J. Polym. Sci., Polym. Chem. Ed. 13, 2277–2289 (1975).
Lutz, J.-F. Sequence-controlled polymerizations: the next Holy Grail in polymer science? Polym. Chem 1, 55–62 (2010).
Lutz, J.-F., Ouchi, M., Liu, D. R. & Sawamoto, M. Sequence-controlled polymers. Science 341, 1238149 (2013).
Yokota, K. Periodic copolymers. Prog. Polym. Sci. 24, 517–563 (1999).
Cho, I. New ring-opening polymerizations for copolymers having controlled microstructures. Prog. Polym. Sci. 25, 1043–1087 (2000).
Hsieh, H. L. Terpolymerization of cyclic ethers with cyclic anhydride. J. Macromol. Sci. Chem. A7, 1525–1535 (1973).
Saegusa, T., Kobayashi, S. & Kimura, Y. Polymerization via zwitterion. 12. Novel 1:1:1 alternating terpolymerization of 2-phenyl-1,3,2-dioxaphospholane, electron deficient vinyl monomers of acrylonitrile and acrylate, and carbon dioxide. Macromolecules 10, 68–72 (1977).
Kanazawa, A., Hashizume, R., Kanaoka, S. & Aoshima, S. Design of benign initiator for living cationic polymerization of vinyl ethers: facile in situ generation of vinyl ether–hydrogen halide adducts and subsequent controlled polymerization without a Lewis acid catalyst. Macromolecules 47, 1578–1585 (2014).
Kanazawa, A., Kanaoka, S. & Aoshima, S. Major progress in catalysts for living cationic polymerization of isobutyl vinyl ether: effectiveness of a variety of conventional metal halides. Macromolecules 42, 3965–3972 (2009).
Ishihama, Y., Sawamoto, M. & Higashimura, T. Living cationic polymerization of styrene by the methanesulfonic acid/tin tetrachloride initiating system in the presence of tetra-n-butylammonium chloride. Polym. Bull. 23, 361–366 (1990).
Ishihama, Y., Sawamoto, M. & Higashimura, T. Living cationic polymerization of styrene by the 1-phenylethyl chloride/tin tetrachloride initiating system in the presence of tetra-n-butylammonium chloride. Polym. Bull. 24, 201–206 (1990).
Higashimura, T., Ishihama, Y. & Sawamoto, M. Living cationic polymerization of styrene: new initiating systems based on added halide salts and the nature of the growing species. Macromolecules 26, 744–751 (1993).
Acknowledgements
We thank Associate Professor S Kanaoka for helpful discussion. We also appreciate contributions by S Kanda and T Shirouchi to the studies on alkoxyoxirane and cyclic formals, respectively. This work was partially supported by JSPS KAKENHI grant number 26708014.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Kanazawa, A., Aoshima, S. Concurrent cationic vinyl-addition and ring-opening copolymerization of vinyl ethers and oxiranes. Polym J 48, 679–687 (2016). https://doi.org/10.1038/pj.2016.27
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/pj.2016.27


