Abstract
Approximately 1–3% of children have intellectual disability or global developmental delay. Heterozygous mutations have emerged as a major cause of different intellectual disability syndromes. In severely affected patients, reproductive fitness is impaired and mutations have usually arisen de novo. Massive parallel sequencing has been an effective means of diagnosing patients, especially those who carry a de novo mutation. The molecular diagnosis can be a way to shift from a more phenotype-driven management of the clinical signs to a more refined treatment based on genotype. Here, we report a novel dominantly inherited KAT6A missense variant in the C-terminal transactivation domain identified by exome sequencing in a girl and her father. Both had intellectual disability/developmental delay, short stature, microcephaly, and strabismus with the father being mildly affected. We here report the first inherited variant in KAT6A and suggest missense variants in KAT6A to be associated with an inheritable, milder clinical presentation compared to previously reported de novo, truncating mutations in this gene.
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BW, Willemsen MH, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511:344–7.
Arboleda VA, Lee H, Dorrani N, Zadeh N, Willis M, Macmurdo CF, et al. De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay. Am J Hum Genet. 2015;96:498–506.
Tham E, Lindstrand A, Santani A, Malmgren H, Nesbitt A, Dubbs HA, et al. Dominant mutations in KAT6A cause intellectual disability with recognizable syndromic features. Am J Hum Genet. 2015;96:507–13.
Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–8.
Gauthier-Vasserot A, Thauvin-Robinet C, Bruel AL, Duffourd Y, St-Onge J, Jouan T, et al. Application of whole-exome sequencing to unravel the molecular basis of undiagnosed syndromic congenital neutropenia with intellectual disability. Am J Med Genet A. 2017;173:62–71.
Millan F, Cho MT, Retterer K, Monaghan KG, Bai R, Vitazka P, et al. Whole exome sequencing reveals de novo pathogenic variants in KAT6A as a cause of a neurodevelopmental disorder. Am J Med Genet A. 2016;170:1791–8.
Murray CR, Abel SN, McClure MB, Foster J 2nd, Walke MI, Jayakar P, et al. Novel causative variants in DYRK1A, KARS, and KAT6A associated with intellectual disability and additional phenotypic features. J Pediatr Genet. 2017;6:77–83.
Trujillano D, Bertoli-Avella AM, Kumar Kandaswamy K, Weiss ME, Koster J, Marais A, et al. Clinical exome sequencing: results from 2819 samples reflecting 1000 families. Eur J Hum Genet. 2017;25:176–82.
Zwaveling-Soonawala N, Maas SM, Alders M, Majoie CB, Fliers E, van Trotsenburg ASP, et al. Variants in KAT6A and pituitary anomalies. Am J Med Genet A. 2017;173:2562–5.
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.
Voss AK, Collin C, Dixon MP, Thomas T. Moz and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity. Dev Cell. 2009;17:674–86.
Goodman FR, Bacchelli C, Brady AF, Brueton LA, Fryns JP, Mortlock DP, et al. Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome. Am J Hum Genet. 2000;67:197–202.
Goodman FR, Scambler PJ. Human HOX gene mutations. Clin Genet. 2001;59:1–11.
Thomas T, Corcoran LM, Gugasyan R, Dixon MP, Brodnicki T, Nutt SL, et al. Monocytic leukemia zinc finger protein is essential for the development of long-term reconstituting hematopoietic stem cells. Genes Dev. 2006;20:1175–86.
Crump JG, Swartz ME, Eberhart JK, Kimmel CB. Moz-dependent Hox expression controls segment-specific fate maps of skeletal precursors in the face. Development. 2006;133:2661–9.
Miller CT, Maves L, Kimmel CB. Moz regulates Hox expression and pharyngeal segmental identity in zebrafish. Development. 2004;131:2443–61.
Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13:673–91.
Acknowledgements
This research was supported by the Foundation of the University Medical Center Schleswig Holstein “Gutes Tun!” (IH). CK is supported by a career development award from the Hermann and Lilly Schilling Foundation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Drs. Yüksel and Rolfs are employees of Centogene AG. The remaining authors declare that they have no conflict of interest.
Additional information
These authors share first authorship: Joanne Trinh, Irina Hüning.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Trinh, J., Hüning, I., Yüksel, Z. et al. A KAT6A variant in a family with autosomal dominantly inherited microcephaly and developmental delay. J Hum Genet 63, 997–1001 (2018). https://doi.org/10.1038/s10038-018-0469-0
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s10038-018-0469-0
This article is cited by
-
MORF and MOZ acetyltransferases target unmethylated CpG islands through the winged helix domain
Nature Communications (2023)
-
Identification of a novel KAT6A variant in an infant presenting with facial dysmorphism and developmental delay: a case report and literature review
BMC Medical Genomics (2021)
-
Five new cases of syndromic intellectual disability due to KAT6A mutations: widening the molecular and clinical spectrum
Orphanet Journal of Rare Diseases (2020)