Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel susceptibility gene SLC23A2 functions via PI3K-AKT-mTOR pathway in etiology of non-syndromic cleft palate

Abstract

The biological interactions between genetic and environmental modifiers play critical roles in the etiology of non-syndromic orofacial cleft (NSOC), but it is rarely studied. This study selected 47 environmental related genes from the metabolic pathways of smoking, drinking, hypoxia, and vitamins (including vitamin A, vitamin B9 (folic acid), vitamin C (ascorbic acid), vitamin D, and vitamin E), and test their associations with NSOC and its subtypes. We found that a novel gene SLC23A2, the vitamin C transporter gene is significantly associated with non-syndromic cleft palate only (NSCPO) (p = 3.25E-07, OR = 8.45, 95%CI:3.73–19.17). SLC23A2 is expressed in the craniofacial region of zebrafish (24hpf to 120hpf), obvious craniofacial abnormalities appeared in zebrafish (48hpf) when knock down the slc23a2 (slc23a2-MO). Knock down SLC23A2 in human embryonic palatal mesenchymal cell line (HEPM) induced decreased intracellular ascorbic acid (AA), increased reactive oxygen species (ROS), inhibited cell proliferation and triggered apoptosis, activated the PI3K-AKT-mTOR signaling pathway and inhibited autophagy; ROS levels and apoptosis ratio significantly decreased when we supplemented AA to HEPM cells with high ROS levels induced by Sin-1 (an exogenous ROS mimic). Knocked down SLC23A2 in HEPM cells or zebrafish, they became more sensitive to Sin-1, and AA supplementation was ineffective. In conclusion, we identified a novel susceptibility gene SLC23A2 for NSCPO, it may function by decreasing AA level, increasing the ROS levels, inducing apoptosis, and inhibiting autophagy through the activation of the PI3K-AKT-mTOR pathway in etiology of cleft palate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Association analysis of SNPs in environmental related genes.
Fig. 2: Expression and functional analysis of slc23a2 in zebrafish.
Fig. 3: Changes of cell biology and ROS in HEPM after SLC23A2 knockdown.
Fig. 4: Effects of SLC23A2/ exogenous ROS/AA interaction on HEPM cellular oxidative stress level and cellular biology.
Fig. 5: Effects of slc23a2/exogenous ROS/AA interaction on oxidative stress and apoptosis in zebrafish.

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

  1. Fan D, Wu S, Liu L, Xia Q, Tian G, Wang W, et al. Prevalence of non-syndromic orofacial clefts: based on 15,094,978 Chinese perinatal infants. Oncotarget. 2018;9:13981–90.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ryu JY, Park TH, Cho BC, Choi KY. The prevalence, risk of premature births, mortality and causes of death of cleft lip with or without palate in South Korea: a nationwide population-based cohort study. Int J Epidemiol. 2022;51:974–83.

    Article  PubMed  Google Scholar 

  3. Nasreddine G, El Hajj J, Ghassibe-Sabbagh M. Orofacial clefts embryology, classification, epidemiology, and genetics. Mutat Res Rev Mutat Res. 2021;787:108373.

    Article  CAS  PubMed  Google Scholar 

  4. Génin E. Missing heritability of complex diseases: case solved?. Hum Genet. 2020;139:103–13.

    Article  PubMed  Google Scholar 

  5. Dixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet. 2011;12:167–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jia ZL, Shi B, Chen CH, Shi JY, Wu J, Xu X. Maternal malnutrition, environmental exposure during pregnancy and the risk of non-syndromic orofacial clefts. Oral Dis. 2011;17:584–9.

    Article  CAS  PubMed  Google Scholar 

  7. Suazo J. Environmental factors in non-syndromic orofacial clefts: A review based on meta-analyses results. Oral Dis. 2022;28:3–8.

    Article  PubMed  Google Scholar 

  8. Beaty TH, Ruczinski I, Murray JC, Marazita ML, Munger RG, Hetmanski JB, et al. Evidence for gene-environment interaction in a genome wide study of nonsyndromic cleft palate. Genet Epidemiol. 2011;35:469–78.

    PubMed  PubMed Central  Google Scholar 

  9. Carlson JC, Shaffer JR, Deleyiannis F, Hecht JT, Wehby GL, Christensen K, et al. Genome-wide Interaction Study Implicates VGLL2 and Alcohol Exposure and PRL and Smoking in Orofacial Cleft Risk. Front Cell Development Biol. 2022;10:621261.

    Article  Google Scholar 

  10. Jianyan L, Zeqiang G, Yongjuan C, Kaihong D, Bing D, Rongsheng L. Analysis of interactions between genetic variants of BMP4 and environmental factors with nonsyndromic cleft lip with or without cleft palate susceptibility. Int J oral Maxillofac Surg. 2010;39:50–56.

    Article  CAS  PubMed  Google Scholar 

  11. Sull JW, Liang KY, Hetmanski JB, Wu T, Fallin MD, Ingersoll RG, et al. Evidence that TGFA influences risk to cleft lip with/without cleft palate through unconventional genetic mechanisms. Hum Genet. 2009;126:385–94.

    Article  PubMed  PubMed Central  Google Scholar 

  12. van Rooij IA, Wegerif MJ, Roelofs HM, Peters WH, Kuijpers-Jagtman AM, Zielhuis GA, et al. Smoking, genetic polymorphisms in biotransformation enzymes, and nonsyndromic oral clefting: a gene-environment interaction. Epidemiology. 2001;12:502–7.

    Article  PubMed  Google Scholar 

  13. Zhu H, Kartiko S, Finnell RH. Importance of gene-environment interactions in the etiology of selected birth defects. Clin Genet. 2009;75:409–23.

    Article  CAS  PubMed  Google Scholar 

  14. Haaland ØA, Lie RT, Romanowska J, Gjerdevik M, Gjessing HK, Jugessur A. A Genome-Wide Search for Gene-Environment Effects in Isolated Cleft Lip with or without Cleft Palate Triads Points to an Interaction between Maternal Periconceptional Vitamin Use and Variants in ESRRG. Front Genet. 2018;9:60.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wu T, Liang KY, Hetmanski JB, Ruczinski I, Fallin MD, Ingersoll RG, et al. Evidence of gene-environment interaction for the IRF6 gene and maternal multivitamin supplementation in controlling the risk of cleft lip with/without cleft palate. Hum Genet. 2010;128:401–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang S, Shi J, Liu C, Wang P, Wang M, Li W, et al. Evidence of the folate-mediated one-carbon metabolism pathway genes in controlling the non-syndromic oral clefts risks. Oral Diseases. 2021;29:1080–88.

  17. Johansen AM, Lie RT, Wilcox AJ, Andersen LF, Drevon CA. Maternal dietary intake of vitamin A and risk of orofacial clefts: a population-based case-control study in Norway. Am J Epidemiol. 2008;167:1164–70.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Khaksary Mahabady M, Najafzadeh Varzi H. Prophylactic effects of levamisole and vitamin E on phenobarbital-induced cleft palate and spina bifida in rat embryos. Iran J Pharm Res : IJPR. 2011;10:135–40.

    PubMed  PubMed Central  Google Scholar 

  19. Krapels IP, van Rooij IA, Ocké MC, West CE, van der Horst CM, Steegers-Theunissen RP. Maternal nutritional status and the risk for orofacial cleft offspring in humans. J Nutr. 2004;134:3106–13.

    Article  CAS  PubMed  Google Scholar 

  20. Webster WS, Howe AM, Abela D, Oakes DJ. The relationship between cleft lip, maxillary hypoplasia, hypoxia and phenytoin. Curr Pharm Des. 2006;12:1431–48.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J, Zhou S, Zhang Q, Feng S, Chen Y, Zheng H, et al. Proteomic Analysis of RBP4/Vitamin A in children with cleft lip and/or palate. J Dent Res. 2014;93:547–52.

    Article  CAS  PubMed  Google Scholar 

  22. Huang L, Jia Z, Shi Y, Du Q, Shi J, Wang Z, et al. Genetic factors define CPO and CLO subtypes of nonsyndromicorofacial cleft. PLoS Genet. 2019;15:e1008357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun Y, Huang Y, Yin A, Pan Y, Wang Y, Wang C, et al. Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate. Nat Commun. 2015;6:6414.

    Article  PubMed  Google Scholar 

  24. Leslie EJ, Carlson JC, Shaffer JR, Butali A, Buxó CJ, Castilla EE, et al. Genome-wide meta-analyses of nonsyndromic orofacial clefts identify novel associations between FOXE1 and all orofacial clefts, and TP63 and cleft lip with or without cleft palate. Hum Genet. 2017;136:275–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun H, Wang Y, Zhang J, Chen Y, Liu Y, Lin Z, et al. CFTR mutation enhances Dishevelled degradation and results in impairment of Wnt-dependent hematopoiesis. Cell Death Dis. 2018;9:275.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Thisse C, Thisse B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc. 2008;3:59–69.

    Article  CAS  PubMed  Google Scholar 

  28. Harrison FE, Dawes SM, Meredith ME, Babaev VR, Li L, May JM. Low vitamin C and increased oxidative stress and cell death in mice that lack the sodium-dependent vitamin C transporter SVCT2. Free Radic Biol Med. 2010;49:821–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol cell Biol. 2023;24:560–75.

    Article  CAS  PubMed  Google Scholar 

  30. Beames TG, Lipinski RJ. Gene-environment interactions: aligning birth defects research with complex etiology. Development. 2020;147:dev191064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen AA, Marsit CJ, Christensen BC, Houseman EA, McClean MD, Smith JF, et al. Genetic variation in the vitamin C transporter, SLC23A2, modifies the risk of HPV16-associated head and neck cancer. Carcinogenesis. 2009;30:977–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Erichsen HC, Engel SA, Eck PK, Welch R, Yeager M, Levine M, et al. Genetic variation in the sodium-dependent vitamin C transporters, SLC23A1, and SLC23A2 and risk for preterm delivery. Am J Epidemiol. 2006;163:245–54.

    Article  PubMed  Google Scholar 

  33. Skibola CF, Bracci PM, Halperin E, Nieters A, Hubbard A, Paynter RA, et al. Polymorphisms in the estrogen receptor 1 and vitamin C and matrix metalloproteinase gene families are associated with susceptibility to lymphoma. PLoS ONE. 2008;3:e2816.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wright ME, Andreotti G, Lissowska J, Yeager M, Zatonski W, Chanock SJ, et al. Genetic variation in sodium-dependent ascorbic acid transporters and risk of gastric cancer in Poland. Eur J Cancer. 2009;45:1824–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, et al. A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature. 1999;399:70–5.

    Article  CAS  PubMed  Google Scholar 

  36. Kokal M, Mirzakhani K, Pungsrinont T, Baniahmad A. Mechanisms of androgen receptor agonist- and antagonist-mediated cellular senescence in prostate cancer. Cancers. 2020;12:1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi L, Li B, Zhang B, Zhen C, Zhou J, Tang S. Mouse embryonic palatal mesenchymal cells maintain stemness through the PTEN-Akt-mTOR autophagic pathway. Stem cell Res Ther. 2019;10:217.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lou S, Ma L, Kan S, Yu X, Wang Y, Yang F, et al. Association Study of Genetic Variants in Autophagy Pathway and Risk of Non-syndromic Cleft Lip With or Without Cleft Palate. Front Cell Development Biol. 2020;8:576.

    Article  Google Scholar 

  39. Fiorani M, Scotti M, Guidarelli A, Burattini S, Falcieri E, Cantoni O. SVCT2-Dependent plasma and mitochondrial membrane transport of ascorbic acid in differentiating myoblasts. Pharmacol Res. 2020;159:105042.

    Article  CAS  PubMed  Google Scholar 

  40. Paduraru E, Flocea EI, Lazado CC, Simionov IA, Nicoara M, Ciobica A, et al. Vitamin C Mitigates Oxidative Stress and Behavioral Impairments Induced by Deltamethrin and Lead Toxicity in Zebrafish. Int J Mol Sci. 2021;22:12714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li D, Ding Z, Du K, Ye X, Cheng S. Reactive Oxygen Species as a Link between Antioxidant Pathways and Autophagy. Oxid Med Cell Longev. 2021;2021:5583215.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cao S, Shen WB, Reece EA, Yang P. Deficiency of the oxidative stress-responsive kinase p70S6K1 restores autophagy and ameliorates neural tube defects in diabetic embryopathy. Am J Obstet Gynecol. 2020;223:753.e751–3.e714.

    Article  Google Scholar 

  43. Chen J, Yao Y, Wang Y, Wang X, Peng X, Li T, et al. Autophagy triggered by the ROS/ERK signaling pathway protects mouse embryonic palatal cells from apoptosis induced by nicotine. Environ Sci Pollut Res Int. 2022;29:81909–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all the participants who donated samples in this study. All authors gave their final approval and agree to be accountable for all aspects of the work. This project was supported by the National Science Funds of China (No. 82170919 and No. 81600849), Sichuan Province Science and Technology support program (2024NSFSC0649), the Research and Develop Program, West China Hospital of Stomatology Sichuan University (No. RD-03-202301).

Author information

Authors and Affiliations

Authors

Contributions

Bin Yin: Data curation, Writing-original draft, Conceptualization, Methodology, Software. Mu-Jia Li: Data curation, Methodology, Software, Writing - Review & Editing. Jia-Lin Sun: Data curation, Methodology, Software, Writing - Review & Editing. Yue You: Visualization, Methodology. Si-Di Zhang: Validation, Writing - Review & Editing. Qian-Xue Wan: Visualization. Mei-Lin Yao: Visualization. Cheng-Wei Yang: Writing - Review & Editing. Hua-Qin Sun: Methodology, Validation. Zi-Yuan Lin: Resources. Bing Shi: Supervision. Zhong-Lin Jia: Conceptualization, Methodology, Validation, Formal analysis, Project administration, Funding acquisition, Writing - Review & Editing.

Corresponding author

Correspondence to Zhong-Lin Jia.

Ethics declarations

Competing interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethics approval and patient consent

The study protocol conformed to the STOBE (strengthening the reporting of observational studies in epidemiology) guidelines and was approved by the institutional review board (IRB) of West China Hospital of Stomatology, Sichuan University in 2016 (WCHSIRB-D-2016-012R1). Written informed consent was obtained from recruited individuals of consenting age and from parents on behalf of their participating children.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, B., Li, MJ., Sun, JL. et al. Novel susceptibility gene SLC23A2 functions via PI3K-AKT-mTOR pathway in etiology of non-syndromic cleft palate. J Hum Genet 70, 443–452 (2025). https://doi.org/10.1038/s10038-025-01352-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s10038-025-01352-y

Search

Quick links