Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Disease-specific genetic diagnostic strategies for muscle diseases unresolved by short-read sequencing

Abstract

In recent years, whole-exome and whole-genome sequencing have been increasingly applied for the genetic diagnosis of muscle diseases. However, standard short-read sequencing often fails to detect pathogenic variants in some inherited muscle diseases, such as Duchenne/Becker muscular dystrophy (DMD/BMD), facioscapulohumeral muscular dystrophy (FSHD), oculopharyngeal muscular dystrophy (OPMD), and oculopharyngodistal myopathy (OPDM). This review outlines the genetic diagnostic approaches for these conditions, with a particular focus on novel analytical approaches for genetic diagnosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nishikawa A, Mitsuhashi S, Miyata N, Nishino I. Targeted massively parallel sequencing and histological assessment of skeletal muscles for the molecular diagnosis of inherited muscle disorders. J Med Genet. 2017;54:104–10.

    Article  PubMed  Google Scholar 

  2. Zhong J, Xie Y, Bhandari V, Chen G, Dang Y, Liao H, et al. Clinical and genetic characteristics of female dystrophinopathy carriers. Mol Med Rep. 2019;19:3035–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Okubo M, Minami N, Goto K, Goto Y, Noguchi S, Mitsuhashi S, et al. Genetic diagnosis of Duchenne/Becker muscular dystrophy using next-generation sequencing: validation analysis of DMD mutations. J Hum Genet. 2016;61:483–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Okubo M, Noguchi S, Hayashi S, Nakamura H, Komaki H, Matsuo M, et al. Exon skipping induced by nonsense/frameshift mutations in DMD gene results in Becker muscular dystrophy. Hum Genet. 2020;139:247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Okubo M, Noguchi S, Awaya T, Hosokawa M, Tsukui N, Ogawa M, et al. RNA-seq analysis, targeted long-read sequencing and in silico prediction to unravel pathogenic intronic events and complicated splicing abnormalities in dystrophinopathy. Hum Genet. 2023;142:59–71.

    Article  CAS  PubMed  Google Scholar 

  6. Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2016;2016:CD003725.

    PubMed  PubMed Central  Google Scholar 

  7. Koeks Z, Bladen CL, Salgado D, van Zwet E, Pogoryelova O, McMacken G, et al. Clinical outcomes in duchenne muscular dystrophy: a study of 5345 patients from the TREAT-NMD DMD global database. J Neuromuscul Dis. 2017;4:293–306.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Angelini C, Pegoraro E, Turella E, Intino MT, Pini A, Costa C. Deflazacort in Duchenne dystrophy: study of long-term effect. Muscle Nerve. 1994;17:386–91.

    Article  CAS  PubMed  Google Scholar 

  9. Pramono ZA, Takeshima Y, Alimsardjono H, Ishii A, Takeda S, Matsuo M. Induction of exon skipping of the dystrophin transcript in lymphoblastoid cells by transfecting an antisense oligodeoxynucleotide complementary to an exon recognition sequence. Biochem Biophys Res Commun. 1996;226:445–9.

    Article  CAS  PubMed  Google Scholar 

  10. Komaki H, Nagata T, Saito T, Masuda S, Takeshita E, Sasaki M, et al. Systemic administration of the antisense oligonucleotide NS-065/NCNP-01 for skipping of exon 53 in patients with Duchenne muscular dystrophy. Sci Transl Med. 2018;10:eaan0713.

    Article  PubMed  Google Scholar 

  11. Clemens PR, Rao VK, Connolly AM, Harper AD, Mah JK, McDonald CM, et al. Safety, tolerability, and efficacy of viltolarsen in boys with Duchenne muscular dystrophy amenable to exon 53 skipping: a phase 2 randomized clinical trial. JAMA Neurol. 2020;77:982–91.

    Article  PubMed  Google Scholar 

  12. Mendell JR, Goemans N, Lowes LP, Alfano LN, Berry K, Shao J, et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol. 2016;79:257–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Frank DE, Schnell FJ, Akana C, El-Husayni SH, Desjardins CA, Morgan J, et al. Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy. Neurology. 2020;94:e2270–e2282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zaidman CM, Proud CM, McDonald CM, Lehman KJ, Goedeker NL, Mason S, et al. Delandistrogene moxeparvovec gene therapy in ambulatory patients (aged ≥4 to <8 years) with Duchenne muscular dystrophy: 1-year interim results from Study SRP-9001-103 (ENDEAVOR). Ann Neurol. 2023;94:955–68.

    Article  CAS  PubMed  Google Scholar 

  15. US Food and Drug Administration. FDA investigating deaths due to acute liver failure following treatment with Sarepta’s AAVrh74 gene therapies. 2025 Jun 24. Available at: https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/fda-investigating-deaths-due-acute-liver-failure-following-treatment-sareptas-aavrh74-gene-therapies. Accessed 1 Aug 2025.

  16. US Food and Drug Administration. FDA requests Sarepta Therapeutics suspend distribution of Elevidys and places clinical trials on hold. 2025 Jul 18. Available at: https://www.fda.gov/news-events/press-announcements/fda-requests-sarepta-therapeutics-suspend-distribution-elevidys-and-places-clinical-trials-hold. Accessed 1 Aug 2025.

  17. McDonald CM, Campbell C, Torricelli RE, Finkel RS, Flanigan KM, Goemans N, et al. Safety and efficacy of ataluren in patients with nonsense mutation DMD: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:1489–98.

    Article  CAS  PubMed  Google Scholar 

  18. Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Colvin MK, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018;17:347–61.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chemello F, Chai AC, Li H, Rodriguez-Caycedo C, Sanchez-Ortiz E, Bassel-Duby R, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv. 2021;7:eabg4910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016;351:407–11.

    Article  CAS  PubMed  Google Scholar 

  21. Skuk D, Goulet M, Roy B, Chapdelaine P, Bouchard JP, Roy R, et al. Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol. 2006;65:371–86.

    Article  CAS  PubMed  Google Scholar 

  22. van Geel M, Dickson MC, Beck AF, Bolland DJ, Frants RR, van der Maarel SM, et al. Genomic analysis of human chromosome 10q and 4q telomeres suggests a common origin. Genomics. 2002;79:210–7.

    Article  PubMed  Google Scholar 

  23. Lemmers RJ, de Kievit P, Sandkuijl LA, Padberg GW, van Ommen GJ, Frants RR, et al. Facioscapulohumeral muscular dystrophy is uniquely associated with one of the two variants of the 4q subtelomere. Nat Genet. 2002;32:235–6.

    Article  CAS  PubMed  Google Scholar 

  24. Lemmers RJ, van der Vliet PJ, Klooster R, Sacconi S, Camaño P, Dauwerse JG, et al. A unifying genetic model for facioscapulohumeral muscular dystrophy. Science. 2010;329:1650–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bakker E, Wijmenga C, Vossen RH, Padberg GW, Hewitt J, van der Wielen M, et al. The FSHD-linked locus D4F104S1 (p13E-11) on 4q35 has a homologue on 10qter. Muscle Nerve Suppl 2, S39–S44 (1995).

  26. Deidda G, Cacurri S, Grisanti P, Vigneti E, Piazzo N, Felicetti L. Physical mapping evidence for a duplicated region on chromosome 10qter showing high homology with the facioscapulohumeral muscular dystrophy locus on chromosome 4qter. Eur J Hum Genet. 1995;3:155–67.

    Article  CAS  PubMed  Google Scholar 

  27. Lemmers RJ, Tawil R, Petek LM, Balog J, Block GJ, Santen GW, et al. Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nat Genet. 2012;44:1370–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van den Boogaard ML, Lemmers RJLF, Balog J, Wohlgemuth M, Auranen M, Mitsuhashi S, et al. Mutations in DNMT3B modify epigenetic repression of the D4Z4 repeat and the penetrance of facioscapulohumeral dystrophy. Am J Hum Genet. 2016;98:1020–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hamanaka K, Šikrová D, Mitsuhashi S, Masuda H, Sekiguchi Y, Sugiyama A, et al. Homozygous nonsense variant in LRIF1 associated with facioscapulohumeral muscular dystrophy. Neurology. 2020;94:e2441–e2447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Deutekom JC, Bakker E, Lemmers RJ, van der Wielen MJ, Bik E, Hofker MH, et al. Evidence for subtelomeric exchange of 3.3 kb tandemly repeated units between chromosomes 4q35 and 10q26: implications for genetic counselling and etiology of FSHD1. Hum Mol Genet. 1996;5:1997–2003.

    Article  PubMed  Google Scholar 

  31. Jones TI, Yan C, Sapp PC, McKenna-Yasek D, Kang PB, Quinn C, et al. Identifying diagnostic DNA methylation profiles for facioscapulohumeral muscular dystrophy in blood and saliva using bisulfite sequencing. Clin Epigenetics. 2014;6:23.

    Article  PubMed  PubMed Central  Google Scholar 

  32. van Overveld PG, Lemmers RJ, Sandkuijl LA, Enthoven L, Winokur ST, Bakels F, et al. Hypomethylation of D4Z4 in 4q-linked and non-4q-linked facioscapulohumeral muscular dystrophy. Nat Genet. 2003;35:315–7.

    Article  PubMed  Google Scholar 

  33. de Greef JC, Lemmers RJ, van Engelen BGM, Sacconi S, Venance SL, Frants RR, et al. Common epigenetic changes of D4Z4 in contraction-dependent and contraction-independent FSHD. Hum Mutat. 2009;30:1449–59.

    Article  PubMed  Google Scholar 

  34. Hamanaka K, Goto K, Arai M, Nagao K, Obuse C, Noguchi S, et al. Clinical, muscle pathological, and genetic features of Japanese facioscapulohumeral muscular dystrophy 2 (FSHD2) patients with SMCHD1 mutations. Neuromuscul Disord. 2016;26:300–8.

    Article  PubMed  Google Scholar 

  35. Hiramuki Y, Kure Y, Saito Y, Ogawa M, Ishikawa K, Mori-Yoshimura M, et al. Simultaneous measurement of the size and methylation of chromosome 4qA-D4Z4 repeats in facioscapulohumeral muscular dystrophy by long-read sequencing. J Transl Med. 2022;20:517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wallace LM, Garwick SE, Mei W, Belayew A, Coppee F, Ladner KJ, et al. DUX4, a candidate gene for facioscapulohumeral muscular dystrophy, causes p53-dependent myopathy in vivo. Ann Neurol. 2011;69:540–52.

    Article  CAS  PubMed  Google Scholar 

  37. Bosnakovski D, Gearhart MD, Toso EA, Recht OO, Cucak A, Jain AK, et al. p53-independent DUX4 pathology in cell and animal models of facioscapulohumeral muscular dystrophy. Dis Model Mech. 2017;10:1211–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Himeda CL, Jones TI, Virbasius CM, Zhu LJ, Green MR, Jones PL. Identification of epigenetic regulators of DUX4-fl for targeted therapy of facioscapulohumeral muscular dystrophy. Mol Ther. 2018;26:1797–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ogasawara M, Eura N, Iida A, Kumutpongpanich T, Minami N, Nonaka I, et al. Intranuclear inclusions in muscle biopsy can differentiate oculopharyngodistal myopathy and oculopharyngeal muscular dystrophy. Acta Neuropathol Commun. 2022;10:176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brais B, Bouchard JP, Xie YG, Rochefort DL, Chrétien N, Tomé FM, et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet. 1998;18:164–7.

    Article  CAS  PubMed  Google Scholar 

  41. Richard P, Trollet C, Gidaro T, Demay L, Brochier G, Malfatti E, et al. PABPN1 (GCN)11 as a Dominant Allele in Oculopharyngeal Muscular Dystrophy -Consequences in Clinical Diagnosis and Genetic Counselling. J Neuromuscul Dis. 2015;2:175–80.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Richard P, Trollet C, Stojkovic T, de Becdelievre A, Perie S, Pouget J, et al. Correlation between PABPN1 genotype and disease severity in oculopharyngeal muscular dystrophy. Neurology. 2017;88:359–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Müller T, Deschauer M, Kolbe-Fehr F, Zierz S. Genetic heterogeneity in 30 German patients with oculopharyngeal muscular dystrophy. J Neurol. 2006;253:892–5.

    Article  PubMed  Google Scholar 

  44. Abu-Baker A, Kharma N, Perreault J, Grant A, Shekarabi M, Maios C, et al. RNA-based therapy utilizing oculopharyngeal muscular dystrophy transcript knockdown and replacement. Mol Ther Nucleic Acids. 2019;15:12–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Robinson DO, Wills AJ, Hammans SR, Read SP, Sillibourne J. Oculopharyngeal muscular dystrophy: a point mutation which mimics the effect of the PABPN1 gene triplet repeat expansion mutation. J Med Genet. 2006;43:e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Robinson DO, Hilton-Jones D, Mansfield D, Hildebrand GD, Marks S, Mechan D, et al. Two cases of oculopharyngeal muscular dystrophy (OPMD) with the rare PABPN1 c.35G>C; p.Gly12Ala point mutation. Neuromuscul Disord. 2011;21:809–11.

    Article  PubMed  Google Scholar 

  47. Ishiura H, Shibata S, Yoshimura J, Suzuki Y, Qu W, Doi K, et al. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat Genet. 2019;51:1222–32.

    Article  CAS  PubMed  Google Scholar 

  48. Deng J, Yu J, Li P, Luan X, Cao L, Zhao J, et al. Expansion of GGC repeat in GIPC1 is associated with oculopharyngodistal myopathy. Am J Hum Genet. 2020;106:793–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sone J, Mitsuhashi S, Fujita A, Mizuguchi T, Hamanaka K, Mori K, et al. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat Genet. 2019;51:1215–21.

    Article  CAS  PubMed  Google Scholar 

  50. Yu J, Shan J, Yu M, Di L, Xie Z, Zhang W, et al. The CGG repeat expansion in RILPL1 is associated with oculopharyngodistal myopathy type 4. Am J Hum Genet. 2022;109:533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eura N, Iida A, Ogasawara M, Hayashi S, Noguchi S, Nishino I. RILPL1-related OPDM is absent in a Japanese cohort. Am J Hum Genet. 2022;109:2088–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liufu T, Zheng Y, Yu J, Yuan Y, Wang Z, Deng J, et al. The polyG diseases: a new disease entity caused by CGG repeat expansions in noncoding regions of multiple genes. Acta Neuropathol Commun. 2022;10:79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Green KM, Glineburg MR, Kearse MG, Flores BN, Linsalata AE, Fedak SJ, et al. RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat Commun. 2017;8:2005.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wright SE, Rodriguez CM, Monroe J, Xing J, Krans A, Flores BN, et al. CGG repeats trigger translational frameshifts that generate aggregation-prone chimeric proteins. Nucleic Acids Res. 2022;50:8674–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the members of the Medical Genome Center at the NCNP for their daily efforts in analyzing the genetic data that formed the basis of this review.

Funding

This study was supported partly by Intramural Research Grant (5-6, 5-5) for Neurological and Psychiatric Disorders of NCNP; Health, Labor, and Welfare Sciences Research Grants (JPMH23FC1014); and JPMH24FC1009 Matsumura Group: “Research for the Dissemination of Standardized Medical Care for Muscular Dystrophy”. Thank you for your attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Saito.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, Y., Nishino, I. Disease-specific genetic diagnostic strategies for muscle diseases unresolved by short-read sequencing. J Hum Genet (2025). https://doi.org/10.1038/s10038-025-01391-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s10038-025-01391-5

Search

Quick links