Abstract
UBQLN2 is located on Xp11.21 and encodes the ubiquilin 2 protein involved in protein homeostasis. Heterozygous or hemizygous missense variants in UBQLN2 cause amyotrophic lateral sclerosis (ALS). In addition, rare cases of primary lateral sclerosis (PLS) and spastic paraplegia (SPG) associated with UBQLN2 variants have also been reported. Here, we report four male patients in a family with SPG carrying a hemizygous missense UBQLN2 variant (NM_013444.4:c.1442G>T, p.(Gly481Val)). These patients showed childhood-onset lower limb spasticity, progressing to gait disturbance. The mean onset age (11 years) was earlier than that of previous ALS (49.6 years), SPG (29 years) and PLS (25.5 years) cases, and their progression was slower than in ALS or PLS. Literature review reveals Pro506 missense variants are associated with various motor neuron disease phenotypes, with some SPG patients progressing to ALS. Therefore, we consider that careful follow-up is warranted for UBQLN2-related SPG patients.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout


Data availability
The authors confirm that the data supporting the findings of this study are available within the article or its supplementary material.
References
Statland JM, Barohn RJ, McVey AL, Katz JS, Dimachkie MM. Patterns of weakness, classification of motor neuron disease, and clinical diagnosis of sporadic amyotrophic lateral sclerosis. Neurol Clin. 2015;33:735–48.
Renaud L, Picher-Martel V, Codron P, Julien JP. Key role of UBQLN2 in pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol Commun. 2019;7:103.
Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477:211–5.
Teyssou E, Chartier L, Amador MD, Lam R, Lautrette G, Nicol M, et al. Novel UBQLN2 mutations linked to amyotrophic lateral sclerosis and atypical hereditary spastic paraplegia phenotype through defective HSP70-mediated proteolysis. Neurobiol Aging. 2017;58:239.e11–39.e20.
Vengoechea J, David MP, Yaghi SR, Carpenter L, Rudnicki SA. Clinical variability and female penetrance in X-linked familial FTD/ALS caused by a P506S mutation in UBQLN2. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14:615–9.
Gellera C, Tiloca C, Del Bo R, Corrado L, Pensato V, Agostini J, et al. Ubiquilin 2 mutations in Italian patients with amyotrophic lateral sclerosis and frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2013;84:183–7.
Fahed AC, McDonough B, Gouvion CM, Newell KL, Dure LS, Bebin M, et al. UBQLN2 mutation causing heterogeneous X-linked dominant neurodegeneration. Ann Neurol. 2014;75:793–98.
Acosta-Uribe J, Aguillón D, Cochran JN, Giraldo M, Madrigal L, Killingsworth BW, et al. A neurodegenerative disease landscape of rare mutations in Colombia due to founder effects. Genome Med. 2022;14:27.
Kotan D, Iskender C, Özoğuz, Erimiş A, Başak AN. A Turkish family with a familial ALS-positive UBQLN2-S340I mutation. Noro Psikiyatr Ars. 2016;53:283–85.
Synofzik M, Maetzler W, Grehl T, Prudlo J, Vom Hagen JM, Haack T, et al. Screening in ALS and FTD patients reveals 3 novel UBQLN2 mutations outside the PXX domain and a pure FTD phenotype. Neurobiol Aging. 2012;33:2949.e13–7.
Williams KL, Warraich ST, Yang S, Solski JA, Fernando R, Rouleau GA, et al. UBQLN2/ubiquilin 2 mutation and pathology in familial amyotrophic lateral sclerosis. Neurobiol Aging. 2012;33:2527.e3–10.
Chen YP, Yu SH, Wei QQ, Cao B, Gu XJ, Chen XP, et al. Role of genetics in amyotrophic lateral sclerosis: a large cohort study in Chinese mainland population. J Med Genet. 2022;59:840–49.
Narendiran S, Debnath M, Shivaram S, Kannan R, Sharma S, Christopher R, et al. Novel insights into the genetic profile of hereditary spastic paraplegia in India. J Neurogenet. 2022;36:21–31.
Higgins N, Lin B, Monteiro MJ. Lou Gehrig’s disease (ALS): UBQLN2 mutations strike out of phase. Structure. 2019;27:879–81.
Acknowledgements
This work was supported in part by the Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research (B) (Grant number JP23K27566 for H.S.), the Japan Agency for Medical Research and Development (AMED) (JP25ek0109760, JP25ek0109674, and JP25ek0109637 for H.S.), the Takeda Science Foundation, and HUSM Grant-in-Aid from Hamamatsu University School of Medicine.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Watanabe, K., Ema, T., Shimizu, K. et al. A Japanese familial spastic paraplegia associated with a missense UBQLN2 variant. J Hum Genet 70, 645–648 (2025). https://doi.org/10.1038/s10038-025-01392-4
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s10038-025-01392-4